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Abstract— Flow is a mental state experienced during holistic
involvement in a certain task, and it is a factor that promotes
motivation, development, and performance. A reliable and
objective estimation of the flow is essential for moving away
from the traditional self-reporting subjective questionnaires,
and for developing closed-loop human-computer interfaces. In
this study, we recorded EEG and pupil dilation in a cohort
of participants solving arithmetic problems. In particular, the
EEG activity was acquired with a prototype of a commercial
headset from Logitech with nine dry electrodes incorporated
in a pair of over-ear headphones. The difficulty of the tasks
was adapted to induce mental Boredom, Flow and Overload,
corresponding to too easy, optimal and too challenging tasks,
respectively. Results indicated statistically significant differences
between all pairs of conditions for the pupil dilation, as well
as for the EEG activity for the electrodes in the ear-pads.
Furthermore, we built a predictive model that estimated the
mental state of the user from their EEG data with 65%
accuracy.

I. INTRODUCTION

In psychology, the flow state is considered to be the mental
state in which a person is fully immersed and focused, feeling
an intrinsic reward while engaging in a certain task [1].
Previous research showed that flow improves motivation [2],
[3], development [4], [5] and performance [6], [7]. Under-
standing and estimating the flow experience with low-cost
and non-invasive methods could facilitate the development of
applications that can potentially evoke such mental state, thus
optimizing the environment for users to learn and perform.
For instance, such systems could prevent interruptions during
work by ensuring that there are no distractions whenever the
system detects the user is in the flow state [8].

Previous studies sought biomarkers of cognitive load and
effort in pupil dilation [9], [10], [11], [12]. In an experiment
in which participants were solving arithmetic tasks mentally,
[13] showed that the pupil dilates gradually between the
presentation of the problem and its solution, reaching its
maximum before reporting the result and then returning to its
original size. While mental effort and cognitive load might
be related to mental flow, none of the above-mentioned
pupillometry studies were designed to directly induce the
flow state in participants.

Traditionally, the mental flow has been measured sub-
jectively through questionnaires [14]. However, subjective
self-reporting interrupts the activity and is thus not able to
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capture moment-to-moment variations. Previous research has
attempted to measure the flow objectively, studying brain
activity through Functional Magnetic Resonance Imaging
(fMRI) [15] while completing mental arithmetic tasks of
varying difficulty. However, the low temporal resolution of
fMRI is problematic for rapidly detecting the flow state, and
it is not feasible for everyday usage. To overcome these
limitations, [16] replicated the experimental paradigm of
mental arithmetic tasks from [15] but used research-grade
electroencephalography (EEG) to seek neural correlates of
mental flow.

EEG can be used to measure brain activity in cases where
users might not be able to articulate their experience properly.
Especially portable EEG setups do not interfere with a partic-
ipant’s behaviour [17], [18], and provide an objective source
of information that does not rely on subjective reporting
[19]. Analysing the EEG signal in different frequency bands
(delta: 13 Hz, theta: 47 Hz, alpha: 813 Hz, beta: 1430 Hz)
showed that the frontal theta-band power and alpha-band
power in the frontal and the right-central areas increase as
the participant enters the flow state [16]. The theta activity
in the frontal area is related to cognitive load [20], [21] and
concentration [22]. On the other hand, the increase in alpha
activity is related to the working memory while performing
the tasks [23], [21].

Typically, human neuroscience research is conducted in
controlled laboratory environments. Thus, its contribution
to understanding real-world scenarios is narrow, and the
translation of findings outside the research lab is not trivial.
In recent years, many non-invasive portable EEG systems
have been developed [24]. Laboratory EEG headsets tend to
have between 32 and 256 wet electrodes placed on all the
areas of interest of the brain. However, commercial headsets
usually have between 1 and 16 dry electrodes, which provide
worse contact with the scalp and offer only sparse electrode
montages, but at the same time improve the user experience
[25]. Nevertheless, the portable EEG systems allow conduct-
ing “real-life” experiments in realistic environments (e.g.,
home or office) and continuously monitoring participants’
brain activity over long periods of time.

Comparison of brain responses under different experimen-
tal conditions allows to investigate biomarkers of mental
states. However, continuous estimation of mental states from
EEG requires a dedicated decoding algorithm. Traditionally,
EEG-based brain-computer interfaces (BCIs) consist of five
steps [26]: EEG data acquisition; pre-processing and data
cleaning; feature extraction; classification/estimation; and
feedback to the user. Different paradigms within BCI require
different signal processing [27], feature extraction [28] and



classification methods [29]. Notably, the use of manually
designed processing chain can be challenging and does not
guarantee the optimal selection of features for a particular
application.

The rise of deep learning has reduced the need for manual
feature design while simultaneously achieving state-of-the-
art performance [30]. In particular, Convolutional Neural
Networks (CNNs) have been successful in many challenging
problems, surpassing methods using domain knowledge for
feature extraction [30], [31]. EEGNet [32] is a compact CNN
that includes well-known EEG feature extraction concepts
like optimal spatial filtering and filterbank construction,
while at the same time reducing the size of the network
compared to previous approaches [33] by two orders of
magnitude. When evaluated on different EEG datasets from
different BCI paradigms, EEGNet outperformed previous
deep learning models in small datasets, as well as classic
signal processing approaches. Table I shows the model
architecture with all its parameters.

In this study, we sought to develop an algorithm for the
mental flow estimation from wearable and portable EEG. To
induce different mental states in the cohort of participants,
we used the paradigm from [16], involving solving mental
arithmetic tasks. During the task, we recorded participants’
brain activity using a prototype of a commercial EEG headset
with nine dry electrodes incorporated in a pair of over-ear
headphones. In addition, we recorded their pupil dilation and
asked them to complete subjective questionnaires without
interrupting the activity, which served as a baseline for
currently used methods for estimation of flow and cognitive
load. We found significant differences between flow and all
other mental states induced during the experiments in both
EEG and pupil dilation. Our EEG biomarkers of mental flow,
recorded using a wearable and portable system, were similar
to [16], which used a research-grade EEG system. Finally,
we designed a neural decoder for estimating participants’
mental flow from EEG. Notably, using classic hand-crafted
features yielded only chance level performance, while a deep
learning-based model allowed to decode mental states with
over 65% accuracy.

II. METHODOLOGY

A. Flow Experiments

The goal of these experiments was to collect data from
participants performing tasks in different mental states, in-
cluding flow, using the protocol of previous studies [15],
[16]. The main difference between our experimental setup
and that of previous research is that we used a prototype of
a commercial Logitech EEG headset with nine dry electrodes
and collected data using an eye tracker.

1) Participants: In this study, 11 Logitech employees (9
males, 2 females) participated in a total of 16 sessions where
5 participants completed the experiment twice on different
days. We excluded three sessions from the dataset: one for
covering the eye-tracker and two for poor contact of the
EEG headset. The duration of the experiment was 1 hour,

including the initial setup. All participants provided a written
consent form following the declaration of Helsinki.

2) Experimental Design: The participants performed
mental arithmetic tasks in different conditions corresponding
to the level of difficulty. As they appeared on the screen,
the tasks had to be solved mentally, and the results had
to be submitted digit-by-digit with a mouse and a low-
contrast on-screen keypad to limit their body movement.
After submitting the result, there was no feedback regarding
the correctness to avoid conditioning the participant.

The experiment had three conditions that correspond to
different levels of task difficulty: Boredom (B), Flow (F) and
Overload (O). The Boredom condition is characterized by
tasks with a low level of difficulty, that provide no challenge
to the participant. In the Flow condition, the difficulty of
the tasks is adjusted dynamically to the participant’s per-
formance, providing a comfortable challenge that facilitates
engagement. Finally, in the Overload condition, the difficulty
is also dynamically adjusted to generate tasks that surpass
their ability. Figure 1 summarizes visually the experimental
design explained in detail below.

The Flow and Overload conditions only considered adding
numbers of at most two digits, and used the same heuristic
to increase or decrease the level of difficulty. To modify the
difficulty, there are two scenarios: if the last summand of
the last arithmetical expression had one digit, then the last
summand in the next level changes to a two-digit number;
and if it had two digits, then the next level adds a one-
digit number at the end. Therefore, these changes occur
alternatively. Decreasing the level follows the same logic
in reverse order, going from two-digit to one-digit numbers
or removing the last one-digit number. For example, level
1 → “12 + 76′′, level 2 → “23 + 86 + 2′′ and level 3
→ “64 + 28 + 55′′.

Given the above-mentioned heuristic, tasks in each condi-
tion were dynamically generated as follows:

• Boredom (B): the first summand is randomly generated
from the range [100, 109]. The second summand is
generated from the range [1, 110 − firstNumber]. This
ensures that the total summation is always between 101
and 110.

• Flow (F): the adjustment of the difficulty is based on the
results of the last two tasks. If the last two results are
correct, then the level increases following the heuristic
described above. On the other hand, if the last two
results are incorrect, the level decreases following the
same heuristic. Otherwise, the level remains the same.
The level can decrease below the initial baseline, but it
can never generate less than two summands of two-digit
numbers.

• Overload (O): the level of difficulty increases when at
least three out of the last five results are correct, and
decreases if at least four out of the last five results
are incorrect. Otherwise, the level remains the same.
However, the level can never decrease below the initial
baseline.

The conditions of Flow and Overload had an initial base-



TABLE I: EEGNet architecture and hyperparameters: C = number of EEG channels, T = input data frame size (samples),
F1 = number of temporal filters, D = depth multiplier (number of spatial filters), F2 = number of pointwise filters, and N
= number of classes. Table was reproduced based on [32].

Block Layer #filters Size #params Output Activation Options
1 Input (C, T)

Reshape (1, C, T)
Conv2D F1 (1, 64) 64 ∗ F1 (F1, C, T) Linear Mode = same
BatchNorm 2 ∗ F1 (F1, C, T)
DepthwiseConv2D D ∗ F1 (C, 1) C ∗D ∗ F1 (D ∗ F1, 1, T) Linear Mode = valid,

depth = D,
max norm = 1

BatchNorm 2 ∗D ∗ F1 (D ∗ F1, 1, T)
Activation (D ∗ F1, 1, T) ELU
AveragePool2D (1, 4) (D ∗ F1, 1, T // 4)
Dropout* (D ∗ F1, 1, T // 4) p = 0.25 or

p = 0.5
2 SeparableConv2D F2 (1, 16) 16 ∗D ∗ F1 + F2 ∗ (D ∗ F1) (F2, 1, T // 4) Linear Mode = same

BatchNorm 2 ∗ F2 (F2, 1, T // 4)
Activation (F2, 1, T // 4) ELU
AveragePool2D (1, 8) (F2, 1, T // 32)
Dropout* (F2, 1, T // 32) p = 0.25 or

p = 0.5

Fig. 1: Diagram of the experimental design: T stands for task (i.e. single arithmetic problem), B for block of tasks, and Q for
questionnaire. Yellow arrows show how a task’s level changes depending on previous results, where B1 would correspond
to Flow and B9 to Overload.

line level that is set according to the skills of each participant.
The Flow baseline was calculated based on a practice session
before the experiment. The practice session starts with two
summands of two-digit numbers and followed the same
heuristics explained above to adjust the level for Flow.
The baseline for the Flow condition was calculated as the
average level of the last 25% of tasks in the practice session.
However, to avoid a lower performance due to unfamiliarity
with the interface, there was a first practice session with tasks
corresponding to the Boredom condition, where participants
could familiarize themselves with the experimental setup.
Finally, the baseline for the Overload condition was set to
three levels higher than the Flow baseline. These baselines
reset for each block, independently of performance.

Each experiment session included three blocks of tasks
for each condition, as well as three Rest (R) blocks. To
eliminate the potentially confounding effect of block or-
der, there were two block sequences: RBFOFROBOBFR or
RBOFORFBFBOR, excluding the initial practice. One of
which was selected randomly for each session. Each regular
block lasted 184 seconds; both practice sessions lasted 5
minutes; individual tasks had a timeout of 18 seconds; there

was a 4-second break between tasks, and rest blocks lasted
25 seconds. Participants were aware of the existence of a
task timeout, but they never knew how much time was left.
The total duration of the recording was approximately 45
minutes, excluding the initial setup.

3) Data Collection: We collected participants’ EEG and
pupil size during the experiments. Additionally, we also
recorded information corresponding to the arithmetic tasks:
initial timestamp, submission timestamp, the result of the
task, answer of the participant, condition, and the number of
digits in the expression. After each block of tasks, partici-
pants were asked to fill out the same electronic questionnaire
used in [15] and [16]. We used the questionnaire only to
assess participants’ engagement, and we did not use that
obtained data in our analyses.

The EEG data were recorded using a new commercial pro-
totype device developed at Logitech. The device incorporated
nine Conscious Labs dry electrodes [34] into a Logitech Pro
X Wireless headset. There were 5 electrodes in the headband
which approximately correspond to “C1”, “C2”, “C3”, “C4”,
“Cz” in the International 10/20 EEG system. Two more
recording electrodes were placed around the ear in each ear-



pad of the headset. The reference and ground were located on
the mastoids. The EEG data were recorded using the Cyton
board from OpenBCI1 and the signals were sampled at 125
Hz and streamed to the PC via low-latency Bluetooth. The
eye-related data were recorded with a Tobii Pro Nano eye-
tracker at 90 Hz in the same constant light conditions to
ensure reliable measurements [35]. The captured data was
synchronized via custom-written Python code using the Lab
Streaming Layer (LSL) [36] protocol and LabRecorder [37].

4) Data Analysis: The performance in the experiment
was measured as the percentage of correct answers and the
average response time for each condition and participant.
These results, as well as the ones from the biomarkers, were
examined using the Games-Howell post-hoc test [38], a non-
parametric approach designed to compare combinations of
multiple conditions which does not assume homoscedasticity,
normality, or equal sample sizes. Furthermore, Cohen’s d
[39] was chosen for calculating effect sizes. In both the pupil
and EEG data, we decided to remove the first second of each
task to account for the time that it took the participant to
actually start solving the problem.

5) Pupil Dilation: The data collected from the eye-tracker
includes the size of the pupil. However, we had to calculate
the percentage of pupil dilation given the pupil size, to
normalize the data across participants. The median pupil size,
in the first 100 ms of each task, corresponded to the baseline
used for calculating the evolution of the pupil dilation in
time. The final pupil dilation examined in the statistical
analysis was the average of both eyes.

The information from the eye-tracker contains blinks and
other artifacts that had to be removed. To detect and remove
these artifacts we defined our own method without parame-
ters. We calculated the discrete derivative of the pupil size
signal to see how much it varies from one point in time
to the next one. Then, we applied a closing function from
mathematical morphology, which yielded an envelope for
the gradients, grouping together some of the outliers that
couldn’t be detected otherwise. Finally, we clipped the values
below a threshold of 0.02, leaving only the artifacts to be
removed.

The logic behind the threshold was that information-
related dilations of the pupil rarely exceed .5 mm [40],
[41]. The threshold in our method was constant and did
not have to be fine-tuned for each individual, unlike most
existing methods [42], [43]. After removing the artifacts, we
smoothed the signal using a zero-phase low-pass first-order
IIR filter with a 4 Hz cut-off frequency [44]. Finally, we
excluded tasks with less than 40% of data remaining after
the artifact removal.

6) EEG: For the pre-processing of the EEG data, we
applied a notch filter at 25 and 50 Hz (i.e. power line noise
and its subharmonic) as well as a band-pass IIR first-order
filter between 1 and 50 Hz.

Afterwards, we calculated the power spectral density
(PSD) for each of the four bands, in each condition, with

1https://openbci.com/

epochs of 1 second. During epoching, we rejected epochs
exceeding 2 standard deviations of the peak-to-peak signal
amplitude (PTP) for each channel. The PSD in different
conditions and from different sensors, were compared in the
statistical analysis.

B. EEGNet

EEGNet [32] is the model that we used to classify raw
EEG into our three classes: Boredom, Flow and Overload;
in order to predict the mental state from single-trial (i.e. one
arithmetic task) EEG. We chose F1 = 8, D = 2, F2 =
16, C = 9, T = 126, N = 3, p = 0.5 as well as
kernel length = 64 and batch = 64 as training parameters
(see Table I), following the same pre-processing presented in
Section II-A.6 as well as standardization by channel for each
individual. The channel-wise mean and standard deviation
were computed from the training data only.

The original dataset was divided into training (80%) and
validation (20%) sets, where each participant contributed
those percentages of data to the collective final dataset.
Given the characteristics of the experiment, different levels
of difficulty led to different response times, which caused
data imbalance across conditions. In the Boredom condition,
tasks were easy and took considerably less time than those
in the Flow and Overload conditions. Therefore, in terms of
seconds of data for EEG, Boredom was under-represented,
as compared to other conditions. Considering this data im-
balance, we trained with weights according to each class.
The model was trained for 5000 epochs using Adam [45]
and the categorical cross-entropy loss. For comparison, we
used a Random Forest [46] classifier (max. tree depth: 5,
number of trees: 1000, min. samples leaf: 1) as a baseline
with the same pre-processing, taking the power bands from
the electrodes in the ear-pads instead of the raw data.

C. Implementation Details

All of the above methods were implemented using custom-
written Python code using the following open-source pack-
ages: MNE [47], Scipy [48], pandas [49], NumPy [50],
Pingouin [51], pyXDF [52], Keras [53], Scikit-Learn [54],
Scikit-Image [55] and imbalanced-learn [56].

III. RESULTS

A. Behavioral Data

The performance of the mental arithmetic tasks was mea-
sured in terms of the percentage of correct answers. The
average performance ± 1 standard deviation in the Boredom
condition was 99.04±2.54%, in the Flow condition 46.04±
17.34%, and in the Overload condition 15.32±16.15%. The
average time response was 2.70±0.37 seconds in Boredom,
14.37 ± 2.31 seconds in Flow and 17.54 ± 0.9 seconds
in Overload. These results are in agreement with previous
studies [16], [15], and indicate a successful induction of
mental states in the participants.



B. Physiological Data

Figure 2a presents the distribution of pupil dilation per
condition considering all participants. As we can observe,
the pupil dilated the least in Boredom, followed by Overload
and yielded the highest average dilation during Flow. There
were statistically significant (p < 0.05) differences in pupil
dilation between all pairs of conditions, considering the data
for all participants (see Table II), but the associated effect
sizes are small (i.e. below 0.3 Cohen’s d).

Figure 2b presents the distribution of EEG power band per
condition, considering all participants. The Flow condition
yielded the highest power and could be distinguished from
other states the easiest. In particular, we found statistically
significant differences (p < 0.05) in EEG band power
between Boredom and Flow as well as between Flow and
Overload in theta, alpha and beta for the electrodes in the
ear-pads (see Table II). The effect sizes were comparable to
those obtained for pupil dilation.

TABLE II: Global effect size (Cohen’s d) for the multiple
comparisons in pupil and EEG, including different frequency
bands and channel subsets. Bold values correspond to a p-
value < 0.05.

Feature Electrodes Boredom/Flow Boredom/Overload Flow/Overload
Pupillometry - -0.286 -0.121 0.140
EEG-Delta All 0.004 -0.032 -0.037
EEG-Theta All -0.022 -0.030 -0.010
EEG-Alpha All -0.077 0.043 0.126
EEG-Beta All -0.062 0.114 0.194
EEG-Delta Headband -0.011 -0.071 -0.062
EEG-Theta Headband -0.028 -0.076 -0.050
EEG-Alpha Headband -0.071 0.006 0.077
EEG-Beta Headband -0.040 0.098 0.141
EEG-Delta Ear-pads -0.071 -0.031 0.042
EEG-Theta Ear-pads -0.108 -0.014 0.100
EEG-Alpha Ear-pads -0.161 0.066 0.257
EEG-Beta Ear-pads -0.161 0.092 0.319

Figure 3 presents the validation accuracies of models for
predicting the mental state from single-trial EEG data. The
average validation accuracy for EEGNet was 65%, and 43%
for the Random Forest. Moreover, all participants except
one achieved higher accuracies for EEGNet. In particular,
Table III shows the precision, recall and F1 score for each
class of EEGNet. The obtained scores were considerably
lower in the Boredom condition, as compared to Flow and
Overload, which were similar. This implies that Boredom
was misclassified more often than other conditions.

TABLE III: Precision, recall and F1 for the EEGNet model.

Mental state Precision Recall F1-Score
Boredom 0.41 0.43 0.42

Flow 0.66 0.70 0.68
Overload 0.71 0.66 0.68

IV. DISCUSSION
The goal of this study was to identify biomarkers cor-

responding to the flow state using mental arithmetic tasks

designed to induce the mental flow state, as well as to build
a model that could continuously estimate the user’s mental
state. In particular, all the experiments were conducted with
a prototype of a commercial EEG headset. Therefore our
results contribute to understanding whether biomarkers of
flow could be estimated outside research laboratories without
access to research-grade equipment.

In conclusion, high theta activity, related to high cognitive
load, and moderate alpha activity, related to low working
memory, were detected in the electrodes in the ear-pads,
suggesting that a combination of both might represent the
state of flow. Overall, these results agree with previous
findings from [16], which used research-grade EEG. The
largest significant effects were obtained for the electrodes in
the ear-pads, which might be explained by the better contact
of these electrodes with the scalp. In addition, we showed
that the EEG power yields similar trends and effects to pupil
dilation measured using a commercial-grade eye tracker.

Furthermore, we built a model for decoding mental states
from single-trial EEG data. We compared a Random Forest
classifier using EEG band power features commonly used
in BCI, with the light-weight EEGNet. The Random Forest
classifier using hand-crafted features failed to predict the
mental states and achieved only 43%, only slightly exceeding
the chance level (33%). EEGNet, on the other hand, achieved
a significantly higher accuracy of 65%. While the EEG band
power features were significantly different for all conditions,
the effect sizes were considerably low. This implied rather
small trial-to-trial differences, which were not consistent
enough to yield good single-trial classification using simple
EEG band power features. The EEGNet model was able to
learn to extract optimal features from EEG, which led to the
improved single-trial mental state classification accuracy.

Although our results indicate that the wearable EEG
system embedded in the conventional headset can detect
biomarkers of mental flow, the study had several limitations.
Firstly, the experimental paradigm proposed by [16] is still
distant from a real-life scenario. To validate the proposed
approach, it should be applied to the long-term continuous
recording of brain activity during realistic tasks, such as
office work, coding, etc. Unlike research-grade EEG, which
does not offer much mobility, our headset prototype allows
the user to move freely, which makes such a follow-up study
possible.

Secondly, we were able to recruit only several participants
to take part in the experiment twice. While the mental state
decoding was generally stable between the two sessions
(Figure 3, subjects with _2 suffixes), we haven’t extensively
studied the longitudinal stability of the decoder. The use
of dry electrodes and misalignment of the headset might
increase between-session variability, which should be inves-
tigated. Future work should systematically study subject-
independent performance of the proposed approach.

Thirdly, the experimental design introduced in [16] could
be improved. The biggest problem we encountered was
the data imbalance, especially in the Boredom condition
associated with easy tasks. In this condition, participants
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solved the problems quickly, which resulted in less task-
related EEG data. This, in turn, impacted the ability of our
models to reliably detect this mental state. The experimental
setup could be improved by re-designing the task to sustain
the induced mental state for longer. This would also solve
the fact that most of the time spent in the Boredom condition
was mouse movement and not mental calculation. Moreover,
most participants reported that some Overload tasks seemed
too difficult and therefore gave up.

Finally, while the presented results are promising for using
wearable EEG for estimating mental states, the decoding
accuracy could be improved. In particular, the continuously
predicted mental states could benefit from an additional
probabilistic model applied to the output of the EEGNet,
which would provide long-term context by integrating con-

secutive predictions. Furthermore, the model could benefit
from including other biosignals, such as heart or respiratory
rate, which were previously used to predict mental flow [57].

V. CONCLUSIONS
We used wearable EEG embedded in a pair of over-ear

headphones to estimate the user’s mental flow during mental
arithmetic tasks. We found significant differences in EEG
band power during the flow states and other experimental
conditions inducing boredom or mental overload, and the
effect size was comparable to that obtained from pupillom-
etry, often used for estimating cognitive load. We used the
deep learning model EEGNet to estimate mental states from
short periods of EEG data corresponding to single trials of
solving arithmetic problems. The proposed model achieved
65% accuracy in the 3-way classification problem, while
the conventional classifier based on the EEG band power
features only slightly exceeded the chance level. Our results
illustrate the potential of using wearable EEG for continuous
estimation of the mental flow state in real-life scenarios
outside the controlled research environment.
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