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ABSTRACT
Tiny, causal models are crucial for embedded audio machine

learning applications. Model compression can be achieved via dis-
tilling knowledge from a large teacher into a smaller student model.
In this work, we propose a novel two-step approach for tiny speech
enhancement model distillation. In contrast to the standard approach
of a weighted mixture of distillation and supervised losses, we firstly
pre-train the student using only the knowledge distillation (KD) ob-
jective, after which we switch to a fully supervised training regime.
We also propose a novel fine-grained similarity-preserving KD loss,
which aims to match the student’s intra-activation Gram matrices to
that of the teacher. Our method demonstrates broad improvements,
but particularly shines in adverse conditions including high compres-
sion and low signal to noise ratios (SNR), yielding signal to distor-
tion ratio gains of 0.9 dB and 1.1 dB, respectively, at -5 dB input
SNR and 63× compression compared to baseline.

Index Terms— speech enhancement, knowledge distillation,
tinyML, model compression

1. INTRODUCTION

In recent years, deep neural network (DNN) models have become a
common approach to the speech enhancement (SE) problem, due to
their performance [1, 2, 3]. However, large, powerful models are of-
ten unsuitable for resource-constrained platforms, like hearing aids
or wearables, because of their memory footprint, computational la-
tency, and power consumption [2, 4, 5, 6]. To meet these constraints,
audio TinyML research tends to focus on designing model architec-
tures with small numbers of parameters, using model compression
techniques to reduce the size of large models, or both [4, 5, 6, 7].

Pruning is a popular method for reducing the size of DNN mod-
els for SE [4, 5, 6, 8]. The goal of pruning is to remove weights
least contributing to model performance. In its simplest form, this
can be performed post-training by removing weights with the low-
est magnitudes. Online pruning, where the model is trained and
pruned concurrently, builds on post-training pruning by exposing
the model to pruning errors while training, allowing it to adapt to
this form of compression noise [4]. Unstructured pruning of indi-
vidual weights can yield impressive model size reduction with little
performance sacrifice, but corresponding savings in computational
throughput are not possible without hardware support for sparse in-
ference, which is unusual in embedded hardware. Structured pruning
of blocks of weights and/or neurons is often designed with broader
hardware compatibility in mind, but the performance drop tends to
be larger than for the unstructured case [6].

In contrast to pruning, knowledge distillation (KD) adopts a dif-
ferent framework. The goal of KD is to utilize a strong pre-trained
teacher model to guide the training of the smaller student [9, 10, 11].
The underlying assumption is that the pre-trained teacher network
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offers additional useful context compared to the ground truth data
by itself. Unlike pruning, this process does not involve modifying
the student network from its original dense form, which reduces the
complexity of the deployment process. In this work, we focus on
KD due to its above-outlined benefits over pruning.

KD methods have been applied to various classification tasks
in the audio domain [12, 13]. However, KD has not been exten-
sively explored for causal low-latency SE, which often requires tiny
networks (sub-100k parameters) optimized for low-resource wear-
able devices, such as hearing aids [5, 6]. So-called response-based
KD approaches use the pre-trained teacher model’s outputs to train a
student network [14, 15]. However, distillation can be further facili-
tated by taking advantage of intermediate representations of the two
models, not just their outputs [10]. One common obstacle in such
feature-based KD is the dimensionality mismatch between teacher
and student activations due to the model size difference. To alleviate
this issue, [16] proposed aligning intermediate features, while [17]
used attention maps to do so. The latter was applied in the context
of SE in [18] using considerably large, non-causal student models
intended for offline applications. In [19], the authors addressed the
dimensionality mismatch problem for the causal SE models by us-
ing frame-level Similarity Preserving KD [20] (SPKD). SPKD cap-
tures the similarity patterns between network activations for different
training examples and aims to match those patterns between the stu-
dent and the frozen pre-trained teacher models. The authors of [19]
also introduced fusion blocks, analogous to [21], to distill relation-
ships between consecutive layers.

Here, we show that the efficacy of conventional KD methods is
limited for tiny, causal SE models. To improve distillation efficacy,
we first extend the method from [19] by computing SPKD for each
bin of the latent representations, corresponding to the time frame (as
in [19]) but also the frequency bin of the input, thus providing more
resolution for KD loss optimization. The proposed extension out-
performs other similarity-based KD methods which we also explore.
Second, we hypothesize that matching a large teacher model might
be challenging for small student models and thus may lead to sub-
optimal performance. Inspired by [22], we propose a novel two-step
framework for distilling tiny SE models. In the first step, the student
is pre-trained using only the KD criterion to match the activation
patterns of the teacher, with no additional ground truth supervision.
The goal of this unsupervised KD pre-training is to make the student
similar to the teacher prior to the main training. Then, the pre-trained
student model is further optimized in a supervised fashion and/or us-
ing KD routines. We find that pre-training using the proposed SPKD
method at the level of the individual bin of the latent representation,
followed by fully supervised training yields superior performance
compared to other distillation approaches utilizing weighted mix-
tures of KD and supervised losses. We report the performance of
our method across various student model sizes, input mixture signal-
to-noise ratios (SNRs), and finally, assess the similarity between the
activation patterns of the teacher and distilled student.
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Fig. 1: (a) Distillation process overview (b) Self-Similarity Gram matrices computation. (c) Flow matrices computation (
⊗

denotes matrix
multiplication). Note that, for clarity, transpositions and matrix multiplications are applied only to the last two dimensions of each tensor.

2. METHODS

2.1. Model architecture

Our backbone architecture for the exploration of tiny SE KD is the
Convolutional Recurrent U-Net for SE (CRUSE) topology [7]. How-
ever, note that the methodology developed here can, in principle,
be applied to any other architecture. The CRUSE model operates
in the time-frequency domain and takes power-law compressed log-
mel spectrograms (LMS) as input. The LMS is obtained by taking
the magnitude of the complex short-time Fourier transform (STFT,
512/256 samples frame/hop size), processing it through a Mel-space
filterbank (80 bins, covering 50-8k Hz range) and finally compress-
ing the result by raising it to the power of 0.3. The model output is
a real-valued time-frequency mask bounded within the range (0, 1)
through the sigmoid activation of the final block. The mask is ap-
plied to the noisy model input and reconstituted into the time domain
using the inverse STFT and the noisy input phase.

The model comprises four encoder/decoder blocks and a bot-
tleneck with grouped GRU units (4 groups), reducing the computa-
tional complexity compared to a conventional GRU layer with the
same number of units [23]. The encoder/decoder blocks are com-
posed of 2D convolution/transpose convolution layers with (2, 3)
kernels (time, frequency) and (1, 2) strides, followed by cumulative
layer normalization [24] and leaky ReLU activation (α = 0.2). To
further reduce the model complexity, skip connections between the
encoder and decoder used in classic U-Net are replaced with 1x1
convolutions, whose outputs are summed into the decoder inputs.
We enforce the model’s frame-level causality by using causal con-
volutions and causal cumulative layer norms. The total algorithmic
latency of the model is 32 ms (single STFT frame) [2].

In our experiments, both teacher and student are CRUSE mod-
els and their sizes are adjusted by changing the number of units in
each block. In particular, the teacher uses {32, 64, 128, 192} en-
coder/decoder channels and 960 bottleneck GRU units, resulting in
1.9M parameters, and 13.34 MOps/frame (i.e. the number of opera-
tions required to process a single STFT frame). Our default student
uses {8, 16, 32, 32} encoder/decoder channels and 160 bottleneck
GRU units resulting in 62k parameters (3.3% of the teacher), and
0.84 MOps/frame (6.3% of the teacher).

2.2. Self-similarity local knowledge distillation

Inspired by previous work [19, 20], we address the issue of dimen-
sionality mismatch between teacher and student models by comput-
ing similarity-based distillation losses. The method captures and
compares the relationship between batch items at each layer out-
put, between teacher and student (Fig. 1a, Llocal

KD ). We refer to this
relationship as the self-similarity Gram matrix Gx.

Self-similarity matrices (Fig. 1b) can be computed for an ex-
ample network latent activation X of shape [b, c, t, f ], where b -
batch size, c - channel, t - activation width (corresponding to the
input time dimension), f - activation height (corresponding to the
input frequency dimension), as shown in Fig. 1b. The original im-
plementation from [20] involves reshaping X to [b, ctf ] and matrix
multiplying it by its transpose XT to obtain the [b, b] symmetric self-
similarity matrix G. Analogously, this operation can be performed
for each t or f dimension independently with resulting Gt/f matri-
ces of size [t/f , b, b]. Such an increase in granularity improved the
KD performance in [19]. Here, we obtain even more detailed intra-
activation Gram matrices by considering each (t, f) bin separately,
resulting in the Gtf self-similarity matrix with shape [t, f , b, b].

Finally, the local KD loss is computed using self-similarity ma-
trices Gx of any kind x obtained from teacher T and student S as:

Llocal
KD =

1

b2

∑
i

∥∥∥GTi
x − GSi

x

∥∥∥2

F
, (1)

where i is the layer index and ∥∥2F is the Frobenius l2 norm.

2.3. Information flow knowledge distillation

The above-outlined local similarity losses can be extended to capture
relationships between activations of subsequent layers of the teacher
and student models (Fig. 1a, Lflow

KD ). The method is inspired by the
Flow of Solution Procedure (FSP) matrices introduced in [22] and
aims to not only match local similarity between the teacher and stu-
dent in the corresponding layers but also global inter-layer relations.

We propose two versions of flow matrices between layers i and
j in our model (Fig. 1c). The first one, Gi→j

t , leverages Gt self-
similarity matrices. Thereby each self-similarity block shares the t-



dimension and thus the interaction between the layers’ self-similarity
can be captured by performing matrix multiplication of Gi

t and trans-
posed Gj

t (both sized [t, b, b]) for each time frame t.
The second version leverages Gtf self-similarity matrices.

However, the f dimension in our model changes for each block
due to the strided convolutions. To quantify the relationship be-
tween layers i and j of different dimensions we reshaped Gi/j

tf to the
size of [t, b, fi/j , b]. Then for each time-batch-item pair (t,b), we
obtain a [fi/j , b] sub-matrix, which can be matrix multiplied with
its transpose to obtain the flow matrix Gi→j

tf of size [t, b, fi, fj].
We define the loss similarly to Eq. 1 by comparing the teacher

GTi→j
x flow matrix with the student GSi→j

x flow matrix, of the same
kind x, for every 2-layer-combination (i, j):

Lflow
KD =

1

b2

∑
i

∑
j>i

∥∥∥GTi→j
x − GSi→j

x

∥∥∥2

F
(2)

2.4. Training objective and two-step KD

We use phase-sensitive spectrum approximation (PSA) [25], with
clean speech as a target, as the supervised portion LPSA of the total
loss. The KD portion LKD of the total loss does not use the ground
truth objective but instead, features obtained from the pre-trained,
frozen teacher model. In particular, LKD can match model outputs
(i.e. response distillation, analogous to [15]), Gx (Llocal

KD ), or Gi→j
x

(Lflow
KD ) matrices introduced in Sections 2.2 and 2.3, respectively.

LPSA and LKD are mixed using γ coefficient to form the total loss:

L = γLKD + (1− γ)LPSA (3)

Inspired by [22], we propose a two-step KD approach by separating
the student distillation process into two distinct parts. Step 1: In the
first step, γ = 1 for a fixed set of epochs to solely minimize LKD .
While excluding the supervised LPSA does not contribute to the op-
timal objective performance, this step provides strong initial weights
for further student model training. Step 2: After this pre-training
step, the student is further optimized to maximize its objective per-
formance using a fully supervised loss by setting γ = 0, (LPSA

only) or a weighted LKD/LPSA loss obtained by setting γ = 0.5.
For one-step KD using a weighted LKD/LPSA loss, we set γ = 0.5.

2.5. Training setup

During training, each epoch consists of 5,000 training steps, with
each step being a 32-item batch of 2-second-long audio clips. We
used the Adam optimizer with 6 · 10−5 learning rate. The teacher
model is trained till convergence to ensure the best performance for
subsequent distillations. We train each student model for a total of
400 epochs (2M steps, 35.5k+ hours of audio). For student model
pre-training (Step 1, Section 2.4), we use 100 epochs with γ = 1,
thus excluding supervised term LPSA (Eq. 3).

3. RESULTS

We use the dataset from the Interspeech 2020 Deep Noise Suppres-
sion (MS-DNS) Challenge [1] for experimentation, which consists
of 500+ hours of clean speech and 100+ hours of noise, all mono
clips sampled at 16 kHz. For model training, we mix the speech and
noise at various SNR levels, sampled from a uniform distribution be-
tween -5 and 15 dB. We employ a LUFS-based SNR calculation for
more perceptually relevant mixtures and to de-emphasize the effects
of impulsive noises [26]. To evaluate the trained models we use

Table 1: One-step KD for tiny SE. Output: LKD comparing teacher
and student outputs (similar to [15]). Gx: Feature-based LKD using
self-similarity matrix of type x (Fig. 1b). All models are initialized
with the same random weights and use γ = 0.5 (Eq. 3).

∆DNS-MOSModel ∆SDR
(dB)

∆PESQ
(MOS)

∆eSTOI
(%) BAK OVRL SIG

Teacher 8.65 1.25 10.07 1.44 0.69 0.06
Student 6.34 0.75 5.82 1.27 0.55 -0.02

Distillation

Output [15] 6.35 0.75 5.59 1.33 0.56 -0.03
G [20] 6.32 0.75 5.70 1.29 0.56 -0.02
Gt [19] 6.50 0.77 5.95 1.33 0.55 -0.04

Gf 6.47 0.74 6.03 1.29 0.56 -0.02
Gtf (ours) 6.68 0.77 5.99 1.36 0.57 -0.04

Table 2: Two-step KD. Step 1 - Student pre-training using only
LKD (γ = 1) or no pre-training (None). Step 2 - LPSA: stu-
dent training with only PSA loss (γ = 0; supervised), Gtf : Loss
from Eq. 3 using Gtf -based LKD and γ = 0.5 (best from Table 1).

∆DNS-MOSModel ∆SDR
(dB)

∆PESQ
(MOS)

∆eSTOI
(%) BAK OVRL SIG

Teacher 8.65 1.25 10.07 1.44 0.69 0.06
Student 6.34 0.75 5.82 1.27 0.55 -0.02

Step 1 Step 2

None Gtf 6.68 0.77 5.99 1.36 0.57 -0.04

LPSA 6.46 0.78 6.07 1.29 0.56 -0.02Gi→j
t Gtf 6.54 0.78 5.88 1.33 0.56 -0.04

LPSA 6.54 0.79 5.87 1.33 0.57 -0.02Gi→j
tf Gtf 6.76 0.80 6.06 1.33 0.57 -0.03

LPSA 6.77 0.81 6.38 1.34 0.59 -0.01Gtf Gtf 6.75 0.80 6.34 1.32 0.57 -0.02

the non-reverberant evaluation set consisting of 150 clips of noisy
speech samples and their respective clean references.

We quantify the performance of each model via Signal-to-
Distortion ratio (SDR) [27], wide-band Perceptual Evaluation of
Speech Quality (PESQ) [28], and extended Short-Time Objective
Intelligibility (eSTOI) [29]. We also report scores obtained from
DNS-MOS P.835 [30], a DNN mean opinion score (MOS) estimator
showing a good correlation with subjective ratings. All of our results
are reported as improvements over unprocessed noisy inputs (∆).

3.1. Self-similarity local KD

Table 1 shows the efficacy of local similarity-based one-step KD ap-
proaches when training student models from scratch. Using teacher
output as LKD in Eq. 3 or G similarity [20] does not improve, or
even deteriorates the student performance. Gt similarity proposed
in [19] provides 0.16 dB SDR improvement over the student alone,
alongside the best PESQ score. Our proposed time-frequency simi-
larity calculation method Gtf outperforms Gt by doubling its SDR
improvement (+0.34 dB, w.r.t. the student alone) and increasing all
other scores. This suggests that increasing the granularity of the sim-
ilarity matrix in the Llocal

KD calculation facilitates the KD process and
overall improves the performance of the distilled student model.
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Fig. 2: Block-wise CKA similarity between students and teacher
networks, averaged over the MS-DNS test set. Mean(diag) and
Mean(all) denote the average similarity for the corresponding blocks
(diagonal) or all the block combinations, respectively.

3.2. Two-step KD

Table 2 presents the results of the proposed two-step distillation pro-
cess described in Section 2.4. We find that using time-preserving
flow matrices Gi→j

t as the LKD pre-training objective (Step 1) yields
comparable or worse performance than using local similarity Gtf

with no pre-training. However, changing the pre-training objective
to Gi→j

tf , which captures interactions between latent representations
in greater detail, yields improvement across nearly all the metrics
when paired with Gtf -based KD as Step 2. Most interestingly, pre-
training the student with Gtf criterion and continuing with only the
supervised loss LPSA provides substantial improvements across all
the metrics, especially SDR (+0.44 dB, w.r.t. the student alone) and
eSTOI (+0.56%), suggesting improved intelligibility.

We further investigate our best two-stage KD approach by per-
forming Central Kernel Alignment (CKA) [31] analysis. In prin-
ciple, CKA allows us to compare the similarity between activation
patterns across different models in response to a set of inputs. We
use the entire evaluation dataset to probe the models and compute
CKA similarities for each pair of layers (averaged over all the audio
clips). Fig. 2-left presents CKA similarity between the teacher and
student trained independently. Fig. 2-middle compares the teacher to
the student pre-trained with Gtf criterion (only Step 1). As expected,
the first step alone increases the similarity between the correspond-
ing teacher and student layers (diagonal). Finally, Fig. 2-right shows
the best student from Table 2, namely Step 1: Gtf LKD-only pre-
training, and Step 2: fully-supervised LPSA. The overall similarity
to the teacher decreases but remains much higher than for the student
trained independently. This suggests that a brief pre-training distilla-
tion (γ = 1, no LPSA) allows the student to develop its unique solu-
tion starting from strong prior knowledge inherited from the teacher.

3.3. Impact of the student model size and mixture SNR

The MS-DNS evaluation dataset consists of relatively high SNRs
between 0 and 19 dB (mean 9.07 dB). To assess the SNR-dependent
benefit of the proposed two-step KD approach, we remix the entire
evaluation set to obtain mixtures of the same speech and noise clips
but at fixed SNRs of -5, 0 and 5 dB. In Table. 3, we observe the
inverse relationship between the benefit of our approach and SNR
of the noisy mixtures. In particular, for -5 dB SNR mixtures, our
KD approach improves student performance by approximately 1 dB
SDR, 1.5% eSTOI, and 0.1 DNS-MOS BAK. This is an important
observation as tiny SE models (here, 3.3% teacher size) tend to ex-
hibit the most significant performance drop in the low-SNR cases,
compared to their larger counterparts [5].

Table 3: Evaluation of the two-step KD approach on the MS-DNS
dataset remixed at fixed SNRs. Proposed: two-step KD using Gtf

pre-training followed by fully-supervised training (best in Table 2).

∆DNS-MOSSNR (dB) Model ∆SDR
(dB)

∆PESQ
(MOS)

∆eSTOI
(%) BAK OVRL SIG

Teacher 14.05 0.62 19.12 2.16 1.02 0.64
Student 10.82 0.30 10.07 1.86 0.79 0.51- 5

Proposed 11.73 0.35 11.61 1.98 0.81 0.47

Teacher 12.30 0.92 17.83 1.99 0.98 0.40
Student 9.65 0.49 10.56 1.75 0.75 0.260

Proposed 10.23 0.56 11.51 1.84 0.79 0.25

Teacher 10.27 1.21 13.98 1.65 0.78 0.02
Student 7.97 0.69 8.58 1.44 0.59 -0.105

Proposed 8.43 0.76 9.32 1.51 0.62 -0.09

Table 4: Impact of the student model size on the two-step KD per-
formance. OPS: number of operations per frame at inference time.
Proposed: two-step KD using Gtf pre-training followed by fully-
supervised training (best in Table 2).

∆DNS-MOSModel Params / OPS
(M)

∆SDR
(dB)

∆PESQ
(MOS)

∆eSTOI
(%) BAK OVRL SIG

Teacher 1.9 / 13.34 8.65 1.25 10.07 1.44 0.69 0.06

Student 4.42 0.50 2.59 1.21 0.47 -0.07
Proposed 0.03 / 0.42 5.52 0.61 4.55 1.18 0.47 -0.05

Student 6.34 0.75 5.82 1.27 0.55 -0.02
Proposed 0.06 / 0.84 6.77 0.81 6.38 1.34 0.59 -0.01

Student 7.24 0.93 7.53 1.38 0.62 0.00
Proposed 0.24 / 2.48 7.60 0.97 7.71 1.41 0.64 0.01

Student 7.51 0.99 7.97 1.39 0.63 0.01
Proposed 0.35 / 3.08 7.54 1.01 8.22 1.38 0.64 0.02

In Table 4 we showcase the efficacy of the proposed KD frame-
work for various student sizes using the same teacher. We observe
that the smaller the downstream model, the larger benefit our KD
method provides over the student trained alone. In particular, for the
30k-parameter student (∼1.5% teacher size), the improvements are
the largest with over 1 dB SDR, 0.1 PESQ, and nearly 2% eSTOI.
For model sizes above 200k (∼15% teacher size), the improvements
start to plateau. These findings indicate that our method provides the
largest performance boost for the most resource-constrained cases,
usually deemed as the most challenging [4, 5, 6].

4. CONCLUSIONS

This work proposes a novel two-step KD protocol for distilling tiny,
causal SE models. No previous KD work has investigated this class
of embedded-scale SE. Our framework consists of two distinct steps:
1. Distilling the student model using only KD objective using only
our proposed fine-grained self-similarity matrix Gtf for computing
distillation loss; 2. Training the model obtained in Step 1 via super-
vised loss. Our results show that tiny SE models distilled in this fash-
ion perform better than KD methods utilizing weighted loss between
supervised and distillation objectives. Our experimental evaluation
shows that the proposed two-step KD provides the largest benefits
for low-SNR mixtures and smaller student models. Future work
should explore integrating the proposed two-step KD with pruning
and/or quantization to achieve SE models of even lower complex-
ity and apply the method to other audio-to-audio problems such as
source separation, bandwidth extension, or signal improvement.
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