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Abstract
As a neurophysiological response to threat or adverse con-

ditions, stress can affect cognition, emotion and behaviour with
potentially detrimental effects on health in the case of sustained
exposure. Since the affective content of speech is inherently
modulated by an individual’s physical and mental state, a sub-
stantial body of research has been devoted to the study of par-
alinguistic correlates of stress-inducing task load. Historically,
voice stress analysis has been conducted using conventional
digital signal processing (DSP) techniques. Despite the de-
velopment of modern methods based on deep neural networks
(DNNs), accurately detecting stress in speech remains difficult
due to the wide variety of stressors and considerable variabil-
ity in individual stress perception. To that end, we introduce a
set of five datasets for task load detection in speech. The voice
recordings were collected as either cognitive or physical stress
was induced in the cohort of volunteers, with a cumulative num-
ber of more than a hundred speakers. We used the datasets to
design and evaluate a novel self-supervised audio representation
that leverages the effectiveness of handcrafted features (DSP-
based) and the complexity of data-driven DNN representations.
Notably, the proposed approach outperformed both extensive
handcrafted feature sets and novel DNN-based audio represen-
tation learning approaches.
Index Terms: computational paralinguistics, voice stress anal-
ysis, audio representation learning, DSP features, deep learning

1. Introduction
The emergence of machine learning methods for the paralin-
guistic analysis of speech signals has been of considerable in-
fluence for healthcare-related applications. This includes both
the detection of long-term traits such as speech pathology [1]
and shorter-term mental states such as emotion, effort, and acute
stress [2–4]. For the latter, inter-individual differences in stress
perception constitutes, among others, one of the major limita-
tions of voice stress analysis (VSA) studies [5].

Among the main sources of acute stress [4], effort-induced
stress can be elicited by increased physical or cognitive de-
mands to complete the task (i.e., physical and cognitive load,
respectively). Both behavioural states have been the subject of
numerous paralinguistic studies [6–10]. On the one hand, phys-
ical load is known to create notable differences in speech pro-
duction, especially due to competition between breathing pro-
cesses for speech generation and increased oxygen consumption
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Figure 1: Hybrid audio representation learning: combining the
self-supervised BYOL framework (blue) with supervision from
DSP features (yellow).

to meet metabolic needs [6]. Regarding voice-related low-level
descriptors (LLDs), several studies have reported increases in
mean fundamental frequency after intensive physical exercise
[7–9]. Similar effects on speech production have been observed
in scenarios eliciting cognitive load [7, 10]. As a matter of fact,
paralinguistic studies of stress have historically relied on hand-
crafted acoustic feature sets based on digital signal processing
(DSP). Such feature sets could then be used for classification of
cognitive or physical load levels using various classical machine
learning approaches, including GMM supervector systems [11],
i-vector frameworks [12], and ensemble learning [13].

Alternatively, several deep learning frameworks have been
proposed for cognitive and physical load detection [14,15]. Yet,
training such models directly on task load corpora remains a
challenging issue due to their small sizes, as larger networks
tend to overfit due to their higher model capacity. To overcome
this issue, several studies have shown that pre-training models
on large corpora of speech or audio can produce state-of-the-art
performance in various data-constrained speech processing and
paralinguistic tasks such as speech emotion recognition [16],
speaker or language identification [17–19].

With that in mind, in this paper, we focus on studying the
detection of cognitive and physical load from voice recording
using data-driven audio representation models. We introduce
four novel datasets related to cognitive load with varying task
complexities, languages, and protocols, and one dataset related
to physical load. We used the datasets to evaluate a novel hy-
brid training protocol for general-purpose speech representation
(Figure 1). The proposed approach aims at taking advantage of
both self-supervised representation learning and non-trainable
DSP-based feature sets. However, unlike existing ensemble ap-
proaches, which simply combine outputs from different mod-
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els, our method incorporates the two models during the train-
ing phase to learn a new and unique representation better than
the sum of its parts. We employed the proposed model to de-
tect cognitive and physical stress from voice recordings in the
above-outlined datasets. We showed that this hybrid speech rep-
resentation generalizes across different datasets and produces
better performance than existing DSP-based, as well as DNN-
based representation learning methods. Importantly, the pro-
posed hybrid model yielded better results than the ensemble of
the methods used for its pre-training.

2. Materials & Methods
2.1. Tasks and Datasets

The speech datasets proposed in this study vary in language,
duration, protocol, and more importantly task complexity. A
brief description of the datasets is addressed in Table 1. Cog-
nitive load was induced in the speakers through multitasking,
based on the idea that cognitive load increases with the num-
ber of tasks to be performed simultaneously [20, 21]. On the
other hand, physical load was induced by recording speech sam-
ples before and after the speaker performed an intensive aerobic
physical exercise (VO2 max running test). In each dataset, the
recorded speech samples were labelled in accordance with the
experimental condition (i.e., with load / without load).
Cognitive Load 1 (Cog1) - This dataset contains 21 speakers (3
female, 18 male) who participated in their native language (En-
glish or French). The experiment comprises six blocks. The first
block consisted of a scripted speech task, in which participants
read aloud at most three sentences from SIWIS, a multilingual
speech and text database [22]. The other five blocks included
the same scripted speech task, but this time participants were
instructed to count spoken syllables mixed in additive Gaus-
sian white noise (AGWN) while reading aloud. Syllables were
selected from the Articulation Index dataset [23]. Each block
contained five trials lasting 10 seconds each, producing approx-
imately five minutes of speech material per speaker.
Cognitive Load 2 (Cog2) - 20 Chinese Mandarin speakers (10
female, 10 male) were recruited to perform a similar task to the
Cog1 task. The experiment included 40 trials per participant: 20
of them included only reading scripted text from randomly se-
lected articles across various media sources, while the other 20
trials comprised an additional working memory task, as partic-
ipants had to listen to and memorise three numeric digits while
reading. Each trial lasted 15 seconds, giving 10 min of speech
material per participant.
Cognitive Load 3 (Cog3) - This task was identical to Cog2,
except for the working memory task, as participants were asked
to memorize alphanumeric digits (e.g., “A5” instead of “5” in
Cog2). The dataset comprised 40 15-second trials from 20
speakers, producing 10 min of speech data per speaker.
Cognitive Load 4 (Cog4) - This dataset was collected from 22
subjects (7 female, 15 male). Audio recordings were collected
as participants performed an experiment in which cognitive load
was induced based on multitasking, with an experimental de-
sign inspired by [24]. The experiment was carried out in three
blocks, a baseline block lasting four minutes, followed by two
multitasking blocks lasting two minutes each. In the baseline
block, participants were shown an image on a screen and were
asked to describe it in as much detail as possible in their native
language. The images shown on the screen were presented in
colour and included cityscapes, landscapes, and famous paint-
ings. Every 30 seconds, a new image appeared, and the par-

ticipants began a new recording. In the multitasking blocks, a
high level of cognitive load was applied by asking participants
to perform four tasks simultaneously, in addition to describing
the image appearing on the screen. The four tasks consisted of
an auditory response task, a visual vigilance task, an arithmetic
task, and a memory task. The participants were instructed to pay
equal attention to all tasks and perform them simultaneously to
the best of their ability, while at the same time describing the
image on the screen in as much detail as possible. For these
blocks, images were selected from commonly used images to
study various mental and cognitive impairments through speech
(e.g., Cookie-theft picture [25]). As in the baseline block, the
presented image changed every 30 seconds. Each participant
produced a total of eight minutes of speech data.
Physical Load (Phys) - 28 participants (13 female, 15 male)
were recruited to perform a VO2 max running test [26]. Be-
fore and after the exercise, participants were instructed to speak
spontaneously in their native language (English or French) for
three minutes about personal topics, e.g., their current work,
their favourite physical activities, or their daily routine. Subse-
quently, 10 utterances were extracted from each speaker, five for
each condition (before and after exercise), where each utterance
lasted between 5 and 15 seconds.

2.2. Audio Representation Models

All cognitive and physical load speech datasets were used
as downstream tasks to benchmark different deep learning-
based audio representations against well-established hand-
crafted acoustic feature sets. Importantly, the data-driven mod-
els were not fine-tuned directly on the task-specific data, but
only pre-trained on independent datasets.

2.2.1. Handcrafted models

openSMILE (OS) - openSMILE [27] is an open-source feature
extraction toolkit that generates handcrafted low-level descrip-
tors (LLD) of audio inputs. This toolkit comprises three feature
sets obtained by computing functionals on LLD contours. The
most prominent of them is ComParE (OS/ComParE) [2], which
contains 6373 static features. Another commonly used feature
set is eGeMAPS (OS/eGeMAPS) [28] which includes 88 fea-
tures. Both approaches are purely DSP-based and require no
pre-training on auxiliary datasets.

2.2.2. Data-driven models

VGGish - VGGish [29] is a commonly used audio feature ex-
tractor derived from the convolutional neural network VGG-
16 [30]. This model was pre-trained in a supervised fashion
to classify audio events from the Youtube-8M dataset [31].
YAMNet - YAMNet [32] is a DNN pre-trained to classify
events from AudioSet, a large collection of audio samples from
YouTube videos [33]. Its feature extractor employs the Mo-
bileNetV1 convolutional architecture [34].
TRILL, layer 19 - TRILL [17] is a model pre-trained in a
self-supervised manner on speech samples from AudioSet. The
CNN model based on ResNetish [29] was originally designed as
a universal speech representation. It uses triplet-loss learning to
create an embedding space where temporally adjacent samples
are mapped close together. Here, we use the features generated
from layer 19, as found by [17] to perform best on non-semantic
speech tasks.
BYOL-A - Unlike contrastive learning frameworks, Bootstrap
Your Own Latent for Audio (BYOL-A) [18] generates audio
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Table 1: Cognitive/physical load speech datasets summary. ENG: English, FRA: French, CMN: Mandarin Chinese.

Dataset Language Utterances Speakers Duration (h) Speech data acquisition protocol

Cog1 ENG/FRA 586 21 1.75 Count audio stimuli (syllables) while reading scripted text
Cog2 CMN 800 20 3.33 Memorise three numeric digits while reading scripted text
Cog3 CMN 800 20 3.33 Memorise three alphanumeric digits while reading scripted text
Cog4 9 languages 349 22 2.93 Describe an image while performing four cognitive tasks
Phys ENG/FRA 280 28 0.70 Spontaneous speech before/after VO2 max running test

representations using two augmented views of a single audio
sample, inspired by the success of BYOL [35] for image repre-
sentation. To obtain audio representations, the log-mel spectro-
gram (LMS) of an input audio sample is first fed to a data en-
hancement module, producing two randomly augmented copies
of the input LMS (Figure 1). Subsequently, the augmented
spectrograms are respectively passed to an online and a tar-
get network. Both networks share a similar architecture, with
an encoder and a projector module. However, the online net-
work comprises an additional module called predictor to avoid
having collapsed representations [35]. The aim of this training
paradigm is for the online network to predict the output gener-
ated by the target network by minimising a mean squared error
(MSE) loss function. BYOL-A has achieved competitive per-
formance in various speech processing tasks, e.g., language and
speaker identification.
BYOL-A Extensions - Following the same implementation of
BYOL-A1, we proposed in a previous work BYOL-S2 [16],
BYOL for speech, which was pre-trained on a speech subset of
AudioSet. In addition, we modified the default CNN encoder ar-
chitecture used in BYOL-A (a 5-layer CNN) using a lightweight
version of the Convolutional vision Transformer (CvT)3 [36] to
leverage the best of CNNs and Transformers. All proposed en-
coders produce an embedding of size 2048. The proposed mod-
els and associated methods are openly available online4.

2.2.3. Hybrid models

Considering the effectiveness of handcrafted features for vari-
ous paralinguistic challenges [2, 3], we derived a new training
protocol for BYOL-S by combining hand-made and data-driven
features in a hybrid format. More specifically, we augmented
the BYOL framework with a supervision network which gen-
erates DSP-based features extracted from the ComParE feature
set in openSMILE, as shown in Figure 1. Therefore, in addition
to the self-supervised BYOL loss (Lss), we computed a super-
vised loss Lsup between the outputs of the supervised and online
networks , set as a MSE. The final loss function was defined as
a weighted sum of the self-supervised and supervised losses:

Lhybrid = αssLss + αsupLsup (1)

where αss and αsup weigh the parts of the self-supervised
and supervised losses, respectively.

Given the size of the ComParE feature set (6373), we pro-
jected the BYOL-S model outputs, from both online and target
networks, to produce 6373-dimensional embeddings to com-
pute the hybrid loss (Lhybrid). However, the output size of the
pre-trained encoder module remained unchanged (2048).

1https://github.com/nttcslab/byol-a
2https://github.com/Neclow/SERAB
3https://github.com/lucidrains/vit-pytorch
4https://github.com/GasserElbanna/serab-byols

2.3. Evaluation Pipeline

All models were evaluated on the five cognitive and physical
load tasks mentioned above. Audio samples were processed
to produce their representation vectors per model. Each down-
stream dataset was divided into training and test sets with ra-
tios of 70% and 30%, respectively. To ensure a fair and ro-
bust evaluation, the partitions were constructed to be speaker-
independent (i.e., all utterances from a given speaker belonged
to either the training or the test set) and to have a similar gender
distribution. Each partition was also standardised (to zero mean
and unit variance) to alleviate inter-speaker variability. Subse-
quently, classification was performed by training and validating
linear support-vector machines (SVMs) using five-fold cross-
validation. A grid search was applied to optimise the penalty
hyperparameter, with values ranging from 10-5 to 105. Using
such a simple classifier with linear kernel allows us to place
more emphasis on the predictive power of the extracted features.
Lastly, model performance was evaluated by computing the un-
weighted average recall on the test set to compensate for any
imbalanced data distributions. All procedures in the evaluation
pipeline were implemented using scikit-learn [37].

3. Results
Table 2 presents the performance of each model in all five
tasks by reporting the unweighted average recall (UAR, in per-
centages) on an unseen and speaker-independent test set. Im-
portantly, using the ComParE handcrafted features exhibited
better performance than most deep learning-based models, in-
cluding recent self-supervised models for speech and audio
representation (TRILL, BYOL-A and BYOL-S). Only BYOL-
S/CvT achieved better performance, although only slightly bet-
ter (1.1% average improvement). This result highlights the ef-
fectiveness of DSP-based features in paralinguistic tasks.

On the other hand, hybrid representation models, which aim
to take advantage of both data-driven and handcrafted features,
yielded significantly better performance. The two proposed hy-
brid models, one using BYOL-A’s CNN encoder [18] and one
with CvT encoding [36], consistently outperformed their cor-
responding BYOL-S models. This result suggests that adding
the DSP-based supervision to the self-supervised representation
learning framework helped to improve its generalization capac-
ity in cognitive/physical load detection tasks.

As the proposed hybrid loss consists of a weighted sum
of its self-supervised and supervised counterparts (Eq. 1), we
reported model performance on the five datasets for different
αss : αsup ratios. Here, we selected the Hybrid BYOL-S/CvT
variant, which yielded the best overall performance. The results
shown in Table 3 indicate a steady increase in model perfor-
mance with increasing weight assigned to the supervised loss
(αsup). The 1:2 loss ratio (αss : αsup) yielded the best model for
detecting cognitive and physical load in the considered tasks.
Increasing the weight of supervised loss further led to a consis-
tent decrease in performance across all tasks.
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Table 2: Test UAR (%) on cognitive and physical load datasets. {} indicates the concatenation of feature vectors. OS: openSMILE [27].
The best scores are shown in bold. The models are sorted according to the UAR averaged across the five tasks.

Model Cog1 Cog2 Cog3 Cog4 Phys Average

VGGish [29] 64.0 69.6 90.0 77.1 55.0 71.1
TRILL, layer 19 [17] 58.8 72.9 93.3 74.0 62.5 72.3
OS/eGeMAPS [28] 62.9 65.4 93.8 72.9 67.5 72.5
BYOL-A [18] 68.0 70.4 90.0 81.3 61.3 74.2
YAMNet [32] 58.1 71.7 99.2 83.3 62.5 75.0
BYOL-S [16] 65.3 72.9 91.7 80.2 66.3 75.3
OS/ComParE [27] 78.7 74.6 100.0 79.2 52.5 77.0
BYOL-S/CvT [16] 79.2 80.0 100.0 74.0 57.5 78.1

Hybrid & ensemble models:
{BYOL-S [16]; OS/ComParE [27]} 76.2 77.9 100.0 83.3 56.3 78.7
{BYOL-S/CvT [16]; OS/ComParE [27]} 81.2 77.1 100.0 79.2 57.5 79.0
Hybrid BYOL-S (αss = αsup = 1) 66.5 75.4 90.8 93.8 71.3 79.5
Hybrid BYOL-S/CvT (αss = αsup = 1) 78.4 74.6 99.2 83.3 66.3 80.3
Hybrid BYOL-S/CvT (αss = 1, αsup = 2) 83.8 72.5 98.3 87.5 70.0 82.4

Table 3: Impact of hybrid loss weighting (Eq. 1) in Hybrid BYOL-S/CvT pre-training on test UAR (%).

αss : αsup (Eq. 1) Cog1 Cog2 Cog3 Cog4 Phys Average

4 : 1 73.5 71.3 97.5 87.5 60.0 77.9
2 : 1 72.2 72.5 99.2 92.7 55.0 78.3
4 : 3 76.7 70.0 98.3 88.5 62.5 79.2
1 : 1 78.4 74.6 99.2 83.3 66.3 80.3
3 : 4 80.2 75.0 99.2 86.5 65.0 81.2
1 : 2 83.8 72.5 98.3 87.5 70.0 82.4
1 : 4 81.4 72.5 97.9 86.5 63.8 80.4

Finally, we further validated the proposed hybrid frame-
work by examining the results obtained by concatenating Com-
ParE features with either BYOL-S or BYOL-S/CvT embed-
dings (8421-D feature vector). In particular, the best hydrid
BYOL-S/CvT model yielded a 3.4% higher UAR than the con-
catenation of the two representations used in its pre-training.

4. Discussion & Conclusions
In this paper, we introduced four novel datasets for large-scale
detection of cognitive and physical load from speech. We used
the datasets to evaluate existing DPS-based and DNN-based
speech representation learning methods, and to develop a novel
hybrid (supervised / self-supervised) approach.

In spite of the effectiveness of data-driven features, hand-
crafted acoustic feature sets maintained competitive perfor-
mance, a result consistent with outcomes of previous paralin-
guistic challenges [3]. To leverage their efficacy, we proposed a
novel hybrid approach obtained by combining data-driven fea-
tures from a BYOL-derived model (BYOL-S/CvT) with hand-
crafted features extracted from openSMILE [27] during pre-
training. This hybrid training protocol outperformed all data-
driven and handcrafted feature sets presented herein, including
fusions of different individual representations. Unlike model
ensemble methods, in the inference stage, the proposed hybrid
model involves only a single encoder (i.e., a single forward-
pass), thus making it lighter & faster than conventional ap-
proaches, which usually require processing of the input samples
through several models. Following the experimentation with
hybrid loss weighting, we found that shifting the loss empha-
sis to the fixed handcrafted features improved the overall model

performance. However, increasing this emphasis beyond the
optimal loss weighting ratio (αss = 1 & αsup = 2, Eq. 1) led to
a poorer performance, which illustrates the synergistic interac-
tion between the two parts of the hybrid framework.

Importantly, the obtained representation differs from a sim-
ple concatenation of BYOL-S/CvT and openSMILE features.
Indeed, the hybrid training protocol allowed the model to learn
a more robust speech representation for detecting cognitive and
physical load. The inclusion of an auxiliary loss to update the
online network from projected DSP-based features likely helps
improve pre-training stability, a known issue in BYOL-derived
frameworks [35] (usually circumvented by exponential averag-
ing of weight updates). Furthermore, the use of fixed DSP-
based features in the representation learning, likely reduces any
potential overfitting to the pre-training dataset. As a matter of
fact, such a hybrid model also produced highly competitive re-
sults within the HEAR benchmark, outperforming several state-
of-the-art approaches [38].

The proposed hybrid representation learning approach
could be easily incorporated into any existing data-driven au-
dio representation learning methods. Moreover, both compo-
nents of the proposed framework could be substituted with other
(potentially larger/complex) models. In particular, the fixed
DSP-based feature extractor could be replaced with another pre-
trained DNN-based representation. In a similar vein to self-
distillation approaches [39], the two learnable representations
could be iteratively updated in the pre-training process to pro-
duce a potentially more robust representation. Alternatively, the
DSP-based feature extractor could also generate a specific fam-
ily of acoustic features (e.g., prosodic features) which could be
beneficial for building more specialized audio representations.
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