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A B S T R A C T

Humans are highly skilled at analysing complex acoustic scenes. The segregation of different acoustic streams and
the formation of corresponding neural representations is mostly attributed to the auditory cortex. Decoding of
selective attention from neuroimaging has therefore focussed on cortical responses to sound. However, the
auditory brainstem response to speech is modulated by selective attention as well, as recently shown through
measuring the brainstem's response to running speech. Although the response of the auditory brainstem has a
smaller magnitude than that of the auditory cortex, it occurs at much higher frequencies and therefore has a
higher information rate. Here we develop statistical models for extracting the brainstem response from multi-
channel scalp recordings and for analysing the attentional modulation according to the focus of attention. We
demonstrate that the attentional modulation of the brainstem response to speech can be employed to decode the
attentional focus of a listener from short measurements of 10 s or less in duration. The decoding remains accurate
when obtained from three EEG channels only. We further show how out-of-the-box decoding that employs
subject-independent models, as well as decoding that is independent of the specific attended speaker is capable of
achieving similar accuracy. These results open up new avenues for investigating the neural mechanisms for se-
lective attention in the brainstem and for developing efficient auditory brain-computer interfaces.
1. Introduction

Humans have an extraordinary capability to analyse crowded audi-
tory scenes. We can, for instance, focus our attention on one of two
competing speakers and understand her or him despite the distractor
voice (Middlebrooks et al., 2017). People with hearing impairment such
as sensorineural hearing loss, however, face major difficulty with un-
derstanding speech in noisy environments, and this difficulty persists
even when they wear auditory prosthesis such as hearing aids or cochlear
implants (Armstrong et al., 1997). Auditory prosthesis could potentially
aid with understanding speech in noise through selectively enhancing a
target speech, for instance based on its direction, using algorithms such
as beam forming (Kidd et al., 2015). However, such selective enhance-
ment requires knowledge of which sound the user aims to attend to.
Current research therefore attempts to decode an individual's focus of
selective attention to sound from non-invasive brain recordings
Reichenbach).
.
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(O'Sullivan et al., 2014; Mirkovic et al., 2015; Biesmans et al., 2017;
Fuglsang et al., 2017). If such decoding worked in real time, it could
inform the sound processing in an auditory prosthesis. It could also form
the basis of a non-invasive brain-computer interface for motor-impaired
patients with brain injury, for instance, who may not be able to respond
behaviourally. Moreover, such decoding of selective attention could be
employed clinically for a better understanding and characterization of
hearing loss.

Neural activity in the cerebral cortex, especially in the delta (1–4 Hz)
and theta (4–8 Hz) frequency bands, tracks the amplitude envelope of a
complex auditory stimulus such as speech (Ding and Simon, 2012, 2014;
Giraud and Poeppel, 2012; Power et al., 2012). The tracking is shaped by
selective attention to one of several sound sources and can be measured
from electrocorticography (ECoG) (Mesgarani and Chang, 2012), and
noninvasively from magnetoencephalograpy (MEG) (Ding and Simon,
2012), as well as from the clinically more applicable
June 2019
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electroencephalography (EEG) (Kerlin et al., 2010; Horton et al., 2013).
Attention to one of two competing voices has been successfully decoded
from single trials of 1min in duration using MEG (Ding and Simon, 2012)
as well as EEG (O'Sullivan et al., 2014; Mirkovic et al., 2015; Fiedler et al.,
2017). Further optimization of the involved statistical modelling led to
an accurate decoding of the focus of selective attention from still shorter
recordings lasting less than 30 s (Biesmans et al., 2017; Van Eyndhoven
et al., 2017). Moreover, a subject's changing focus of attention could be
detected within tens of seconds from EEG data, and even faster fromMEG
data, when combined with additional sparse statistical modeling (Miran
et al., 2018).

Recently we showed that subcortical neural activity is consistently
modulated by selective attention as well (Forte et al., 2017). To this end
we developed a method to measure the response of the auditory brain-
stem to natural non-repetitive speech. We employed empirical mode
decomposition (EMD) to extract a waveform from the speech signal that,
at each time instance, oscillates at the fundamental frequency of the
voice. We then correlated this fundamental waveform to the neural
recording obtained from a few scalp electrodes. We observed a peak in
the cross-correlation at a latency of 9ms, evidencing a neural response at
the fundamental frequency with a subcortical origin. This method
determined the brainstem response to the voiced parts of speech, and in
particular to its pitch. When volunteers listened to two competing
speakers, we observed that the brainstem response to the fundamental
frequency of each speaker was larger when the speaker was attended
than when she or he was ignored.

Because the brainstem response to speech that we measured occurs at
the fundamental frequency of speech, typically between 100 and 300Hz,
it is ten-to hundredfold faster than the cortical tracking of the speech
envelope. The rapidness of the brainstem response could imply a high
information rate, despite the small magnitude of the response that is
below that of cortical responses. We therefore wondered if the brainstem
response to natural speech can be detected from high density EEG, that is
typically used to capture the cortical activity, and whether it can be used
to efficiently decode auditory attention.

2. Materials and methods

2.1. Participants

18 healthy adult English native speakers (aged 22.8� 1.9 year, four
females), with no history of auditory or neurological impairments
participated in the study. All participants provided written informed
consent. The experimental procedures were approved by the Imperial
College Research Ethics Committee.

2.2. Experimental design and statistical analysis

We employed the same experimental design that we used previously
to measure the brainstem response to non–repetitive speech and its
modulation through selective attention (Forte et al., 2017). In particular,
approximately 10-min long continuous speech samples from a male and
female speaker were obtained from publicly available audiobooks (lib
rivox.org). For the female voice excerpts from “The Children of Odin”
(chapters 2 and 4) and “The Adventures of Odysseus and the Tale of Troy”
(part 2, chapter 8), all by P�adraic Colum and read by Elizabeth Klett,
were selected. For the male voice excerpts from “Tales of Troy: Ulysses the
Sacker of Cities” by Andrew Lang (section 11) and “The Green Forest Fairy
Book” by Loretta Ellen Brady (chapter 10), all read by James K. White,
were used. The first story from the female speaker was employed when
presenting speech in quiet. The two other female speech samples were
used to generate two stimuli with two competing speakers by mixing
each with one sample from the male speaker, at equal root-mean-square
amplitude.

Participants first listened to the stimulus with a single speaker
without background noise. They then listened to the two stimuli with two
2

competing speakers each. They were instructed to exclusively attend
either the male or female voice in the first stimulus, and to attend to the
speaker they previously ignored in the second one. Whether a subject was
instructed to first attend the male speaker and then the female speaker or
vice versa was determined randomly for each subject. Each stimulus was
presented in four parts of approximately equal duration (~2.5min), and
comprehension questions were asked after each part. All stimuli were
delivered diotically, that is, the same waveforms were delivered to the
right and left ears, at 76 dB(A) SPL (A-weighted frequency response)
using Etymotic ER-3C insert tube earphones to minimise artifacts. The
sound intensity was calibrated with an ear simulator (Type 4157, Brüel&
Kjaer, Denmark). EEG recordings were obtained during the stimuli pre-
sentation and their statistical analysis was performed using custom
Matlab and Python code and functions from the MNE toolbox (Gramfort
et al., 2013, 2014) as described below.

2.3. Neural data acquisition and processing

Neural activity was recorded at 1 kHz through a 64-channel scalp EEG
system using active electrodes (actiCAP, BrainProducts, Germany) and a
multi-channel EEG amplifier (actiCHamp, BrainProducts, Germany). The
electrodes were positioned according to the standard 10-20 system and
referenced to the right earlobe. The EEG recordings were band-pass
filtered offline between 100 and 300Hz (low pass: linear phase FIR fil-
ter, cutoff (�6 dB) 325 Hz, transition bandwidth 50Hz, order 66; high
pass: linear phase FIR filter, cutoff (�6 dB) 95 Hz, transition bandwidth
10 Hz, order 364; both: one-pass forward and compensated for delay) and
then referenced to the average. When only using three channels for the
decoding, all channels except the two mastoids TP9 and TP10 and the
vertex Cz were discarded, and the filters described above were applied.
The audio signals were simultaneously recorded by the amplifier at a
sampling rate of 1 kHz through an acoustic adapter (Acoustical Stimu-
lator Adapter and StimTrak, BrainProducts, Germany), and were used to
align the neural responses to the stimuli. A 1ms delay of the acoustic
signal introduced by the earphones was taken into account by shifting the
audio signal forward by 1ms with respect to the neural response.

2.4. Computation of the fundamental waveform of speech

We employed Empirical Mode Decomposition (EMD) to extract a
waveform from each speech signal that, at each time instance, oscillates
at the fundamental frequency of the voice; we refer to it as the funda-
mental waveform (Forte et al., 2017). EMD is indeed well suited to
analyze data that results from non-stationary and nonlinear processes
such as speech production, and has been successfully used for pitch
detection (Huang and Pan, 2006). The fundamental waveform was
downsampled to 1 kHz, the sampling rate of the neural recordings, and
filtered between 100 and 300 Hz as described above. Silent or unvoiced
parts of the speech produced some segments where the fundamental
waveform was equal to zero. For the stimuli with a single speaker, we
excluded such segments from the further analysis. For the stimuli with
two competing speakers we excluded the few segments where the
fundamental waveform of one of the two voices was entirely zero as
attention could not be decoded in this case.

We also computed a proxy of the fundamental waveform by band-pass
filtering the audio signal in the range of the fundamental frequency. We
thereby employed FIR filters with corner frequencies of 100Hz and
200Hz for the male voice (linear-phase FIR filter, lower cutoff (�6 dB):
90 Hz, transition bandwidth 17.5 Hz, higher cutoff (�6 dB): 210 Hz,
transition bandwidth 17.5 Hz, order 237, one pass forward and
compensated for delay), as well as corner frequencies of 150Hz and
250Hz for the female voice (linear-phase FIR filter, lower cutoff (�6 dB):
135 Hz, transition bandwidth 25 Hz; higher cutoff (�6 dB): 275 Hz,
transition bandwidth 25Hz, order 157, one pass forward and compen-
sated for delay). We employed the band-pass filtered audio signals to
obtain the results on attention reported in Fig. 7-B. All other results
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Fig. 1. The brainstem response to natural speech
detected from high-density EEG recordings using
complex linear models. (A) The performance of the
linear backward model is quantified through the
Pearson's correlation coefficient of the reconstructed
fundamental waveform and the actual one. For each
subject the presented result is the averaged correla-
tion coefficient obtained from 10-s long segments of
the EEG and the fundamental waveform (white bars).
In almost all subjects, the performance is significantly
better than that of a model estimating the noise-level
reconstructions. Subjects have been ordered by
increasing performances. (B) The channel-averaged
magnitude of the complex coefficients of the generic
forward model obtained from the pooled data from all
the participants that yielded significant re-
constructions, peaks at a latency of 8ms. Only la-
tencies ranging from 3 to 14ms yield a statistically-
significant response (black bar, p< 0.05, Bonferroni
correction), as compared to noise models. (C) At the
delay of 8ms, a significant neural response emerges
from the mastoid channels as well as from the chan-
nels near the midline (white disks, p< 0.05, FDR
correction, population average). (D) The phase of the
complex coefficients at the delay of 8 ms shows a
phase difference of around π between the temporal
areas and the central one (population average).

Fig. 2. Brainstem responses to speech from two single
subjects. The top row shows the brainstem response
from subject 9 that yielded the median fundamental
waveform reconstruction performance (Fig. 1). The
bottom row presents the results from subject 18 that
had the best reconstruction of the brainstem response
to speech. (A) The channel-averaged magnitude of the
complex coefficients of the forward model peaks at a
latency of 9ms (subject 9) and 10ms (subject 18). (B)
The topographic maps of the coefficient magnitudes at
the peak latency are consistent with those of the
generic model, although more noisy in the case of
subject 9. Channels located at the mastoids show the
highest magnitudes. (C) The phase of the complex
coefficients at the peak latency. The phases differ
between the two subjects since they have been taken
at different latencies (9 and 10ms, respectively).
Consistent with the generic model, the topographic
plots show a phase difference of around π between the
temporal areas and the central area.

Fig. 3. Absence of stimulus artifacts. Magnitude of the cross-correlation be-
tween the EEG data and the broadband speech stimulus averaged over channels
and participants. The only time lags for which the cross correlation is signifi-
cantly greater than the estimated noise floor are between 9 and 12ms. In
particular, the model shows no significant response at the delay of �1ms, the
delay of the earphones, evidencing the absence of stimulus artifacts.
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presented here were obtained from waveforms extracted by EMD.
2.5. Backward model

We first used a linear spatio-temporal backward model to reconstruct
the fundamental waveform of speech from the neural recordings. Spe-
cifically, at each time instance tn, the fundamental waveform yðtnÞ was
estimated as a linear combination of the neural recordings xjðtn þ τkÞ as
well as their Hilbert transform xhj ðtn þ τkÞ at a delay τk:

byðtnÞ ¼ XN
j¼1

XT
k¼1

h
βðrÞj;k xjðtn þ τkÞ þ βðiÞj;kx

h
j ðtn þ τkÞ

i
(1)

The index j refers hereby to the recording channel, and βðrÞj;k ; β
ðiÞ
j;k are a

set of real coefficients to determine. We used a set of T¼ 25 possible
delays τk ranging from �5ms to 19ms with an increment of 1ms. The
Hilbert transform of each recording channel was included in Equation
(1), denoted with the upper index h, to allow the reconstruction of the
fundamental waveform from these signals as well. The Hilbert transform



Fig. 4. Attentional modulation of the auditory brainstem response to natural
speech. The order of the subjects is as in Fig. 1A. (A) The performance of the
linear backward model for the male voice is better when the male speaker is
attended (black) then when he is ignored (red). The two performances differ
significantly in most subjects, and so do the two average performances (avg).
The average ratio between the two performances is 1.22 and is significantly
larger than one (p¼ 0.01). (B) The performance of the linear backward model
that reconstructs the fundamental waveform of the attended female voice is
likewise significantly better than that for the ignored female voice in most
subjects, as well as on average (avg). The average ratio of the two performances
is 1.15 and is significantly larger than one (p¼ 0.039). The ratios for the male
and female voices do not differ significantly (p¼ 0.47).

Fig. 5. Differences in the brainstem response to attended and to ignored speech.
(A, C) The subject-averaged ratio of the magnitude of the complex coefficients of
the attended forward model to those of the ignored model, at the average peak
latency of 9ms. None of these ratios are statistically different from unity (FDR
correction). (B, D) The subject-averaged phase difference between the co-
efficients of the attended and the ignored forward models, at the average peak
latency of 9 ms. Channels close to the midline as well as at channels near the
mastoids yielded a significant phase difference (p< 0.05, FDR correction). The
male models exhibit a phase difference of �0.51 π (95% CI: [-0.56 π; �0.47 π]),
while the female model phase difference is �0.12 π (95% CI: [-0.17 π; �0.08 π]).

Fig. 6. Decoding of auditory attention. (A) Testing data of a duration of 32 s
that were obtained from a subject listening to the male speaker (black) can
potentially be discriminated from those obtained when a subject listened to the
female voice (red) through the performances r from four linear backward
models (MA, MI, FA, FI; Methods). The classification can employ the difference
in the performances between the models MA and FA (green) or the difference
between the models FI and MI (orange). (B) The subject-averaged decoding
accuracy obtained from the models MA and FA reaches 73% at a duration of 32 s
and remains above chance level (grey) for very short durations of 500ms.
Decoding based on the models FI and MI remains below chance level (average
over all subjects). (C) Employing only three recording channels to decode
attention reduces the performance of the classifiers only slightly, if at all.
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of a sinusoid results in a phase shift of π/2, which equates to a temporal
shift of a quarter period. Even narrow-band signals such as our band-pass
filtered EEG recordings contain, however, a range of frequencies. While
the Hilbert transform of these signals can still be interpreted as a phase
shift of π/2, it can no longer be obtained by a temporal shift. The Hilbert
transforms therefore add another set of predictors in Equation (1) that
are independent of the time-shifted EEG signals, and that thereby aid the
reconstruction of the fundamental waveform.

The model's coefficients can be assembled into complex coefficients

βj;k ¼ βðrÞj;k þ iβðiÞj;k that encode accordingly the amplitude of the brainstem

response, the temporal delay as well as the phase difference between
stimulus and response. We thus obtained T¼ 25 temporal delays that,
4

together with theN¼ 64 recording channels, led to 1,600 complex model
coefficients.

The model coefficients were then estimated for each subject using a
regularised ridge regression as β ¼ ðXtX þ λIÞ�1Xty, in which X is the
design matrix of dimension np � 2NT with np the number of samples
available in the recording, and λ is a regularisation parameter (Hastie
et al., 2009). In particular, the columns of the design matrix are the
neural recordings xjðtn þ τkÞ at the different time points tn as well as their
Hilbert transforms xhj ðtn þ τkÞ: To normalise for differences between
datasets, λ can be written as λ ¼ λn em where em is the mean eigenvalue of
XtX and λn is a normalised regularisation coefficient (Biesmans et al.,
2017).

A five-fold cross-validation procedure was implemented to evaluate
the model. In each of five iterations, and for each participant, four folds of
the 10-min data were used to compute the model coefficients, yielding
about 8min of training data. The remaining fifth fold, 2 min of testing
data, served to estimate the fundamental waveform and to compute the
performance of the model. The performance was quantified by dividing
the reconstructed ðby ¼ X βÞ and the actual (y) fundamental waveforms
obtained on the testing data in 10-s long segments and computing
Pearson's correlation coefficient between these waveforms for each
segment. The correlation values obtained over the five testing folds were
pooled to determine the mean and standard error of the reconstruction
performance. This performance was determined for 50 different nor-
malised regularization parameters with values ranging from 10�15 to
1015. For each subject, the regularization parameter that yielded the
largest reconstruction performance was chosen as the optimal regulari-
zation parameter.

The procedure above, including the use of the Hilbert transform of the
EEG data, was employed both when reconstructing the fundamental
waveform obtained from EMD as well as when estimating the funda-
mental waveform obtained from band-pass filtering the speech signal
(see below).



Fig. 7. Different types of attention decoding and intra-subject variability. The two rows of panels correspond to the 64-channel and to the 3-channel decoders,
respectively. (A) The attention decoding accuracies from the speaker-specific models achieved per individual subject (coloured lines, consistent across panels) varies
by up to approximately 50% around the average (bold black line). However, for each individual subject the decoding based on 64 channels (top) is similar to that
achieved from three channels (bottom). Here, the decoding is based on the difference between the attended models (same data as presented on the population level in
Fig. 6-B,C by the green lines). (B) Instead of using empirical mode decomposition (EMD), a fundamental waveform can be estimated by band-pass filtering the speech
signal, which can be implemented in an online fashion. Attention decoding based on the band-pass filtered audio achieves a similar performance as the one based on
the EMD. (C) Attention can be efficiently decoded using a single attended model for both speakers as well. (D) The use of the out-of-the-box backward models for
reconstructing the fundamental waveforms, leads to reduced, yet better than chance, decoding accuracies for most subjects.
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The Python code for computing the complex coefficients of the
backward model, together with a sample of a fundamental waveform and
the corresponding EEG recordings, is on Github (Kegler et al.).

2.6. Significance of the fundamental waveform reconstruction

To determine if the linear backward models showed a significant
brainstem response to the fundamental frequency, we also computed, for
each subject, one noise model as a linear backward model that attempted
to reconstruct the fundamental waveform of an unrelated speech
segment from the same female speaker. The noise models were computed
using the same methodology we employed for determining the actual
brainstem response, including the same cross-validation procedure and
the same determination of the optimal regularization parameter per
subject.

We then assessed whether the correct linear backward model out-
performed the noise model, or the opposite, by comparing the correlation
coefficients obtained on the 10-s segments through a two-tailedWilcoxon
signed rank test. The results of the statistical tests are indicated for each
subject in Fig. 1-A through asterisks: no asterisk is given when results are
not significant (p > 0.05), one asterisk when results are significant (*,
0:01 < p � 0:05), two asterisks when significance is high (**, 0:001 <

p � 0:01), and three asterisks when significance is very high (***, p �
0:001).

2.7. Estimation of the neural response (forward model)

To gain further information about the neural origin of the response
we also computed a linear forward model that estimated the EEG re-
sponses from the fundamental waveform. The coefficients of the forward
model, as opposed to those of a backward model, allow for a neurobio-
logical interpretation of their spatio-temporal characteristics (Haufe
et al., 2014). The forward model relates the EEG recording xjðtnÞ at time
tn to the fundamental waveform yðtn � τkÞ as well as its Hilbert transform
yhðtn � τkÞ at a delay τk:

xjðtnÞ ¼
XT
k¼1

h
αðrÞ
k yðtn � τkÞ þ αðiÞ

k yhðtn � τkÞ
i
; (2)
5

in which αðrÞk and αðiÞk are the model's real coefficients. They can be

interpreted as real and imaginary parts of the complex coefficients αk ¼
αðrÞk þ i αðiÞk . To investigate the temporal dynamics of the neural response,
we considered a broader range of time lags than for the backward model.
Specifically, we employed a set of T¼ 201 possible delays τk that ranged
from �50ms up to 150ms with an increment of 1ms. Although we did
not expect a neural response at negative delays or at delays larger than
20ms, we included those nevertheless to verify the absence of a signif-
icant response there. The model coefficients were estimated by concat-
enating the data from all subjects that showed a significant brainstem
response to the speech signal as assessed earlier (generic or subject-
averaged model) and using a regularised ridge regression as previously
described.

As for the backward model, we made the Python code for computing
the complex coefficients of the forwardmodel available on Github as well
(Kegler et al.).
2.8. Significance of the auditory brainstem response

We sought to investigate at which latencies significant neural re-
sponses emerged. We therefore compared the obtained forward model to
noise models. One thousand forward noise models were computed
analogously to the forward model, except that the fundamental wave-
form of the actual speech signal was replaced with a fundamental
waveform of an unrelated speech stimulus, from the same female
speaker. We constructed these unrelated speech stimuli by randomly
picking four parts, each with a duration of 2.5-min, from the eight parts
that constituted the female speech material used in the competing
speaker condition. This procedure was repeated to create 1,000 surrogate
waveforms (out of all 1,680 possible combinations). We then employed a
mass-univariate analysis to identify the significant time delays (Groppe
et al., 2011). In particular, we computed the average magnitude of the
responses over the EEG channels, yielding a single real time-varying
function for the actual neural response and of the noise responses. We
then pooled the values from the 1000 noise responses over the time lags
to establish a single empirical null-distribution. We used this distribution
to determine a critical value corresponding to a p-value of 0.05 to which
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the actual neural response was compared at each time lag from�50ms to
150ms (Bonferroni correction for multiple comparison).

In addition, we analysed the topography of the forward model at the
peak latency τ0 of the average magnitude of the responses over the EEG
channels. To this end, the forward noise models were used to build an
empirical null distribution for each channel. For each noise model, the
peak latency of the average magnitude was determined, and the
magnitude of each channel's response at this latency was used to establish
the null distribution of that channel. Finally, the forwardmodel at time τ0
was compared to the corresponding null empirical distribution at the
respective channel at a significance level of p¼ 0.05, with FDR correction
for multiple comparison over channels.

2.9. Stimulus artifacts

We also computed the cross-correlation between the EEG responses to
speech in quiet and the corresponding broad-band speech signal, with the
purpose of checking for stimulus artifacts. To this end the speech stimulus
was resampled from 44,100Hz to 1,000 Hz, the sampling frequency of
the EEG data. The cross-correlation functions were then analysed for
statistically significant peaks at delays between �200ms and 200ms
following the same procedure as described above for the forward model.
Briefly, the cross-correlations were first averaged over subjects, and the
absolute value of the resulting functions were then averaged over elec-
trodes, yielding the average neural response as a function of latency. To
establish a chance level, the same calculations were reproduced when
replacing the speech stimulus by a different one from the same speaker.
This procedure was repeated 1,000 times, yielding 1,000 noise responses.
These stimuli were constructed as described above. These noise re-
sponses were pooled over time lags to build a single null distribution that
was then used to assess the significance of the actual averaged neural
responses as described above for the forward model (p¼ 0.05,
Bonferroni-corrected for multiple comparison over time lags between
�200ms and 200ms).

2.10. Attentional modulation of the auditory brainstem response

To analyse the attentional modulation of the brainstem response to
one of two competing speakers, we computed two pairs of backward
models for each subject. The first pair of models reconstructed the
fundamental frequency of the male voice while it was either attended
(MA model) or ignored (MI model). The second pair of models recon-
structed the fundamental waveform of the female voice when the subject
attended it (FA model) or when the subject ignored it (FI model). The
computation of the backward models, and the assessment of their per-
formance, was done through five-fold cross-validation as explained
above.

For each speaker, the performances of the attended and ignored
models were then compared using a two-tailed Whitney-Mann rank test
at the subject level. The results are indicated in Fig. 4 through asterisks as
described above. We further employed a two-tailedWilcoxon signed rank
test to investigate whether the population-average ratios of the perfor-
mances were, for each speaker, significantly different from unity. Finally,
we used a two-tailedWilcoxon signed rank test to check if the population-
average ratios obtained from the responses to the male voice and to the
female voice were significantly different.

2.11. Differences between brainstem responses to attended and to ignored
speech

We sought to determine whether the difference in the brainstem
response to attended and to ignored speech reflected merely a difference
in the strength of the response, or if there were other changes as well. To
this end, we compared the magnitudes and the phases of the complex
coefficients of the forward model for an attended voice to those for an
ignored voice. Because the forward models for the male and for the
6

female voice reflected the different fundamental frequencies of both
speakers, we performed this analysis separately for the male and for the
female voice. Regarding the magnitude, we computed the ratio of the
amplitude of the attended and of the unattended model, at the peak delay
of their average amplitude (9ms, for both the male and female voices).
We then employed a two-tailed Wilcoxon signed rank test to determine
for which electrodes the ratio was significantly different from unity
(p< 0.05, FDR-corrected for multiple comparison over electrodes). To
compare the phase, we computed the phase difference between the
attended and the ignored model at each electrode at this same peak la-
tency. We considered the wrapped phase differences that weremapped to
the range of [-π, π]. We then determined the statistical significance of the
phase difference through the Rayleigh test for non-uniformity of circular
data (p< 0.05, FDR-corrected for multiple comparison over electrodes).
The Rayleigh test assesses the null hypothesis that the phase differences
are uniformly distributed around the circle. However, it does not inform
on the value of the phase differences. Therefore, we derived 95% con-
fidence intervals for the mean phase difference by pooling the data across
all electrodes that exhibited significant phase clustering. All circular
statistics were performed using the Circular Statistics Toolbox for Matlab
(Berens, 2009). Finally, we compared the latency of peak amplitude
between the attended and ignored models using a Wilcoxon signed rank
test.

In order to enable a direct comparison with our previous related
work, we also computed the difference between the TRF at electrode CPz
and the average TRF of the two mastoids to produce one dipolar response
(Forte et al., 2017). CPz was selected due to its central location, similar to
the one used in our previous study, and because it emerged in our present
study as one of the central electrodes that displayed a significant response
to speech in quiet (Fig. 1-C). We then computed the ratio of this dipolar
response between the attended and the ignored condition.

2.12. Decoding of auditory attention

We investigated how attention could be decoded from short segments
of neural data that were obtained in response to competing speakers. We
first trained and assessed the performances of the two pairs of speaker-
specific linear backward models (MA, MI, FA, FI, as described above)
using five-fold cross-validation. For all the attention decoding procedures
presented hereafter, the normalised regularisation coefficient of the
backward models was fixed to the value that yielded the best recon-
struction for speech in quiet, λn ¼ 10�0:5.

The testing fold was divided into testing segments with a duration of
0.5, 1, 2, 4, 8, 16 and 32 s. For each testing segment we therefore ob-
tained four different correlation coefficients: the correlation coefficient
rMA between the fundamental waveform of the male speaker and its
reconstruction based on the MA model, the correlation coefficient rMI
between the fundamental waveform of the male speaker and its recon-
struction based on theMI model, as well as the correlation coefficients rFA
and rFI between the fundamental waveform of the female speaker and its
reconstruction based on the FA and FI model, respectively. The computed
correlation coefficients were then employed to decode attention on each
segment. We thereby explored two different avenues (Fig. 6-A).

First, we based the decoding on the attended models MA and FA only.
To this end, we compared the correlation coefficients from both models.
If rMA exceeded rFA we concluded that the male speaker was attended,
and otherwise that the female speaker was the focus of attention. Second,
we considered the ignored models MI and FI only. If rMI was larger than
rFI attention was decoded as having been directed at the female speaker,
and vice versa if rMI was smaller than rFI.

The decoding of attention using these two different methods was
performed using all 64 EEG channels as well as based on three EEG
channels only (vertex and mastoids: Cz, TP9, TP10). The decoding of
attention based on the attended models was also performed using the
fundamental waveform obtained by band-pass filtering.

We sought to compare the performance of the obtained attentional
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decoding to that of a random classifier. A random binary classifier can
achieve a high accuracy by chance. This is especially true when the
number of testing data is small, which in our case occurs when the
duration of the testing segments is long. To account for this effect, we
determined the 95% chance level, that is, the highest accuracy that a
random classifier would achieve in at least 95% of cases. This 95%
chance level was computed using a binomial distribution (Combrisson
and Jerbi, 2015).

2.13. Subject-independent attention decoding

In real-life situations, the decoding of auditory attention may be
required for a subject for whom training data is not available. This sit-
uation requires to train a decoder on other people for whom training data
is at hand, and to then apply it to the subject under consideration. We
refer to such decoders as out-of-the-box models since, once trained on the
data from a set of volunteers, they can be readily applied to other sub-
jects. To assess how well these out-of-the-box models decode auditory
attention, we trained linear backward models on the pooled data from all
subjects and quantified their performances using a leave-one-subject-out
cross-validation coupled with a five-fold cross-validation regarding the
auditory stimuli (i.e. testing on data from a subject and from a part of the
stimulus unused during training). To train the model, the testing data
from all-but-one participants was concatenated and used to obtain the
model coefficients. The unseen part of the data from the remaining
subject was used to assess the performance of the model. In particular, we
assessed the classifier that compared the performances of the MA and the
FA model. Its classification accuracy was evaluated as described above.

2.14. Speaker-averaged attention decoding

We also wondered how well selective attention could be decoded
from the brainstem response if the specific models of the brainstem re-
sponses to the individual voices were not available. We therefore fol-
lowed a similar analysis as used for decoding auditory attention based on
the speech envelope (O'Sullivan et al., 2014). For each subject, we
computed a single backward model for an attended voice, irrespective if
it was the male or the female one. This model was accordingly trained on
the data from both the condition when the subject attended the male
voice and the condition when they listened to the female speaker. The
male fundamental waveform was used as the reconstruction target when
the male speaker was attended, and the female fundamental waveform
was the target when the female voice was attended. An equal proportion
of data from each attention condition was included in each
cross-validation fold. To determine the focus of attention, we then
considered short testing segments as described above. For each testing
segment we computed the correlation coefficient between the recon-
structed fundamental waveform and the actual ones of the two speakers.
If the reconstruction matched the fundamental waveform of the male
speaker more closely than that of the female one, we concluded that the
subject had attended the male speaker. Otherwise we determined that
the focus of attention was on the female voice. The performance of the
classifier was evaluated as described above.

3. Results

3.1. Response to a single speaker

We first measured neural responses to a single non-repetitive speech
signal from 64-channel EEG. We employed empirical mode decomposi-
tion to obtain a fundamental waveform from the speech signal (Forte
et al., 2017), and linear regression with regularization to reconstruct the
fundamental waveform from the multi-channel EEG data for each indi-
vidual subject (linear backward model, Methods). The performance of
the reconstruction was assessed through the mean Pearson's correlation
coefficients over 10-s segments of the reconstructed fundamental
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waveform to the actual one (Fig. 1-A).
We verified that the linear backward models did extract a significant

brainstem response to speech. To this end we also constructed models
based on the fundamental waveform of unrelated speech signals from the
neural data. For almost all subjects that we assessed (15 out of 18), the
model that reconstructed the actual fundamental waveform significantly
outperformed the one that attempted to reconstruct an unrelated
fundamental waveform, showing that the former was able to extract a
meaningful brainstem response (Fig. 1-A, two-tailed Wilcoxon signed
rank test).

To investigate the spatio-temporal characteristics of the brainstem
response we computed a generic linear forward model that estimated the
EEG recordings from the fundamental waveform using the data from all
the subjects that yielded significant reconstructions in the previous test
presented in Fig. 1-A (Methods). The average over channels of the
magnitude of the obtained complex coefficients peaked at 8ms, and only
the latencies around this peak (3–14ms) yielded statistically-significant
neural responses (Fig. 1-B). This finding demonstrated the subcortical
origin of the neural activity and was in agreement with previous re-
cordings of speech-evoked brainstem responses (Skoe and Kraus, 2010;
Reichenbach et al., 2016; Forte et al., 2017; Maddox and Lee, 2018). The
magnitude of the coefficients at that latency showed major contributions
from the mastoids as well as moderate contributions from the central
scalp areas (Fig. 1-C). Both the mastoid channels as well as the channels
near the midline of the scalp yielded significant responses. The co-
efficients at the central area were approximately in antiphase to those
near the mastoids, reflecting the direction of the brainstem's dipole
sources (Fig. 1-D).

We also computed linear forward models for single subjects (Fig. 2).
We find that they yielded peak responses at similar latencies, and showed
similar topographies, although these were noisier than the ones obtained
from the average over all subjects.

3.2. Absence of stimulation artifacts

To determine if stimulus artifacts were present in the recordings, we
computed a cross-correlation between the EEG data and the broadband
speech signal. Broadband speech elicits neural responses from the
brainstem to the cortex, at latencies ranging from 5ms to a few hundred
ms (Maddox and Lee, 2018). A stimulus artifact would arise, in contrast,
instantaneously, at a delay of �1ms. This delay reflects the fact that, in
our analysis, we compensated for the earphone's 1ms delay of delivering
the sound to the ears. The responses that we recorded contained, how-
ever, only significant contributions between 9 and 12ms delays, firmly in
the range of subcortical neural activity (Fig. 3). We could accordingly not
detect stimulus artifacts in our EEG recordings.

3.3. Attentional modulation of the response to competing speakers

We then investigated how attention modulates the brainstem
response. Following a classic auditory attention paradigm we presented
subjects with a male and a female voice diotically and simultaneously,
instructing them to attend to either the male or the female speaker, while
recording their neural activity from 64-channel EEG (Ding and Simon,
2012; Forte et al., 2017). For each subject, we computed four linear
backward models. The first model, MA, reconstructed the fundamental
waveform of the male voice when the subject attended to it. The second
model, MI, reconstructed the fundamental waveform of the male speaker
when the subject ignored it. Analogously, a third and fourth model, FA
and FI, reconstructed the fundamental waveform of the female voice
when it was attended or ignored, respectively. We observed that the
performance of the two models that reconstructed the fundamental
waveform of a speaker when they were attended was, in most subjects,
significantly better than that of the corresponding model for the ignored
voice (Fig. 4, two-tailed Whitney-Mann rank test). The average ratio
between the reconstruction performance of the model for the attended
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male voice to that for the ignored male voice was 1.22, significantly
larger than one (Z(17)¼ 7, p < 0:001, two-tailed Wilcoxon signed rank
test). The ratio was 1.15 in the case of the female voice, which was
significantly above one as well (Z(17)¼ 38, p¼ 0.039, two-tailed Wil-
coxon signed rank test). The two ratios did not differ significantly
(Z(17)¼ 69, p¼ 0.47, two-tailed Wilcoxon signed rank test). The better
reconstruction performance of the fundamental waveform of an attended
speech signal demonstrates the attentional modulation of the brainstem
response to speech that we described previously (Forte et al., 2017).

We wondered if the difference between the attended and the ignored
brainstem response reflected merely a difference in the strength of the
response, or if there were other differences as well. To investigate the
nature of these differences, we compared the coefficients of the attended
forward models to those of the ignored models, at the peak delay of their
average amplitude (9ms). We found that the ratio of the magnitude of
the coefficients did not differ statistically from unity, neither for the male
nor for the female voice (Fig. 5-A,C; Wilcoxon signed rank test, FDR
correction for multiple comparison over electrodes). However, we found
a statistically significant clustering of phase differences between the
attended and the ignoredmodels at several electrodes near the midline as
well as near the mastoids (Fig. 5-B,D; Rayleigh test for non-uniformity of
circular data, FDR correction for multiple comparison over electrodes).
For the male voice, the mean phase difference was found to be �0.51 π
(95% confidence interval: [-0.56 π; �0.47 π]), while it was �0.12 π for
the female voice (95% confidence interval: [-0.17 π; �0.08 π]). This
shows that the ignored models were not merely a scaled version of the
attended models, but that the brainstem response to ignored speech
occurred at a different phase from that to attended speech.

Due to the range of frequencies that constitute the fundamental
waveform, the phase shift between the attended and the ignored models
did not equate to a consistent temporal shift. We did indeed not find a
statistically-significant difference in the timing between the peak
amplitude of the attended and the ignored models across the different
subjects, for the male or female voice (p¼ 0.17 and p¼ 0.69 respectively,
two-tailed Wilcoxon signed rank test).

To facilitate comparison with previous work we also computed the
difference of the mastoid electrodes and the electrode at CPz, yielding a
dipolar response (Forte et al., 2017). We found that the response's ratio
between the attended and ignored condition was significantly greater
than unity, for both the male and female voices (p¼ 0.016, and p¼ 0.003
respectively, Wilcoxon signed rank test).

3.4. Decoding of auditory attention

Having verified the attentional modulation of the brainstem response
to speech using high-density EEG recordings and linear backward
models, we sought to investigate whether this approach could be used to
decode auditory attention. We expected the focus of attention to emerge,
for instance, from the difference in the performances of the models MA
and FA. This difference should typically be positive when the subject
attended to the male voice and be negative otherwise (Fig. 6-A). Simi-
larly, attention could potentially be decoded from the difference of the
reconstruction performance of the models FI andMI. A subject's attention
to the male voice should mostly lead to a positive difference, and a focus
on the female voice to a negative difference.

We tested the accuracy of the decoding on samples of a duration that
varied from half a second to over 30 s (Fig. 6-B). The averaged decoding
accuracy based on the attended models (MA, FA) remained significantly
above chance even for very short samples that lasted only half a second. It
was, for instance, 59% and 69% for 2-s and 16-s samples, respectively. In
contrast, the models MI and FI by themselves did not allow for a decoding
of the attentional focus with an accuracy that was better than chance. In
the following we therefore discuss decoding obtained from the attended
models only.

Practical applications of the decoding of auditory attention benefit
from a small number of required recording channels. We therefore
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investigated how well the developed decoding works if the linear back-
ward models use only three EEG channels, the left and right mastoid as
well as the central channel Cz. Strikingly, the subject-averaged decoding
accuracy was barely smaller than that of the 64-channel model; for
instance, it remained at 69% for a 16-s sample when the classifier based
on the attended models was used (Fig. 6-C).

Both for the 64-channel as well as for the 3-channel decoding we
observed variation in the decoding accuracy from subject to subject
(Fig. 7-A). For a duration of 16 s, for instance, some subjects showed
decoding accuracy close to 90%, whereas other subjects exhibited
significantly lower decoding accuracies that did not exceed the change
level. However, even for short testing segments and for the majority of
subjects, the decoding remained above chance level. We note in addition
that the subjects that did not allow for significant decoding include those
for whom we did not obtain significant brainstem responses to speech in
quiet (Fig. 1-A).

Because of the complexity of empirical mode decomposition (EMD),
the computation of the fundamental waveform through this method
cannot typically be performed online. We therefore wondered if attention
could be decoded based on a similar waveform obtained through band-
pass filtering the audio signal in the range of the fundamental fre-
quency. Band-pass filtering is indeed a comparatively simple operation
that can run in real time. We found that decoding based on the band-pass
filtered audio has a similar accuracy as the one based on the waveform
obtained from EMD, which is encouraging for real-time applications
(Fig. 7-B).

Real-world settings will often feature voices that have not been
encountered before and for which no speaker-specific model of the
brainstem response is available. In an attempt to generalise our results,
we computed a speaker-averaged backward model for any attended
speaker, irrespective of whether it was the male or the female one. We
then decoded attention from the performance of this speaker-averaged
model in reconstructing the fundamental waveform of either the male
of the female speaker. The averaged decoding accuracies that we ob-
tained were slightly lower than those from the speaker-specific models
but were above chance level for durations down to 0.5 s (Fig. 7-C).

The decoding described above utilized linear backward models that
were subject specific and hence required prior training from EEG re-
cordings for each individual. Such subject-specific training may, how-
ever, not always be available. We thus assessed the performance of a
linear backward model that was trained on the whole population of
subjects, and thus represented an average model that could be used out-
of-the-box to decode attention. As expected, the decoding accuracies
were then lower than those for the subject-specific models. While the
decoders based on the attended models with all 64-channels remained
above the chance level for all the tested durations, the 3-channel setup
yielded worse performance only slightly exceeding the chance level for
all but the longest duration. For duration of 16 s, for instance, the 64-
channel setup yielded 65% accuracy, while the 3-channel only 63%
(Fig. 7-D). Although the accuracy of this decoding when averaged across
subjects was not very high, we note that this average was significantly
reduced by a few subjects that showed particularly poor accuracies of
around 50%, reflecting poor brainstem recordings from these subjects.
The majority of the subjects, in contrast, yielded decoding accuracies that
exceeded the chance level.

4. Discussion

We showed that the brainstem response to the fundamental frequency
of speech can be measured reliably from high-density EEG recordings in
most subjects through a statistical modelling approach. The response is
most evident in the differences between the electrodes near the mastoids
and those close to the vertex, in agreement with the dipolar structure of
scalp-recorded auditory brainstem activity (Ono et al., 1984; Grandori,
1986; Norrix and Glattke, 1996; Bidelman, 2015). Moreover, the
response latency of 8ms evidenced a subcortical origin.
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The frequency-following response (FFR) to simpler acoustic signals
such as long vowels has recently been found in an MEG study to contain
cortical contributions (Coffey et al., 2016). However, when measured
through EEG, the cortical contributions emerge earliest at a latency of
20ms, are smaller than the subcortical ones, and mostly apparent for
frequencies up to about 100Hz (Bidelman, 2018). The response to the
fundamental frequency of running speech that we have measured here
does not show ameasurable signal at latencies longer than 14ms and was
recorded in response to a fundamental waveform high-pass filtered above
100 Hz. While contributions from cortical structures cannot be entirely
ruled out, we did not observe any within our measurement accuracy.

When subjects switched attention from one to another of two
competing speakers, we found that the fundamental frequency of each
speaker was better encoded in the brainstem response when that speaker
was attended rather than ignored. These results align with those that we
obtained previously from different recording equipment and with a
different analysis procedure that did not involve statistical modelling and
that did not address attention decoding (Forte et al., 2017). Here we
found, however, that the ratio of the attended to the ignored temporal
response functions, as obtained from the forward models, did not differ
significantly between the male and the female voice. Indeed, although
the scalp maps that we derived largely showed a larger response to the
attended than to the ignored speaker (Fig. 5-A, C), the modulation was
not statistically significant. This presumably reflected the inclusion of all
electrodes in the forward model, including many electrodes that dis-
played a poor signal-to-noise ratio. The backward models, in contrast,
employed a weighting of the contribution from each electrode which
boosted those with a large signal-to-noise ratio and thus led to a more
significant result. To further investigate this issue, we also computed the
response at a single channel that was obtained as the difference between
the electrodes at the mastoids and at CPz, mimicking our previous bipolar
recordings (Forte et al., 2017). The amplitude of this response was
significantly modulated by selective attention, in agreement with our
previous results.

The modelling work that we developed here allowed us to further
investigate the origin of the difference in the brainstem response to
attended and to ignored speech. We thereby found a significant differ-
ence between the phases of the response to attended versus ignored
speech. Such a phase shift could in principle emerge from a difference in
latency between the attended and ignored model. However, we found no
statistically significant difference in peak latency of the attended and
ignored responses. The phase shift might instead signify different relative
contributions of different parts of the brainstem to the scalp-recorded
response. The different values of the phase shift that we obtained for
the male and female voice may reflect the differences in the fundamental
frequencies of both stimuli.

Most importantly, we developed a procedure to decode the atten-
tional focus of a subject to speech based on her or his brainstem response
as measured from as few as three recording channels. This will enable the
future characterization and investigation of the subcortical mechanisms
through which the brain solves the cocktail party problem. Potential
practical applications include brain computer interfaces, such as neuro-
steered auditory prostheses, as well as clinical assessments of supra-
threshold hearing impairments that cannot be identified from pure-
tone audiometry. Any of these applications will benefit from a decod-
ing method that is fast and requires only a small number of recording
channels.

We showed that the best decoding is achieved when linear models
that relate the neural recording to the speech signal are computed for
each subject individually. Such subject-specific models may cause diffi-
culty in practice as sufficient training data per subject may not always be
obtainable. The out-of-the-box models reflect the generalized version of
the models obtained from the data pooled over many subjects and can be
readily applied to other subjects for which no training data is available.
We have shown that while the decoding performance of the out-of-the-
box models is below those of the subject-specific models, the average
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decoding accuracy still exceeds the noise level for the high-density EEG
setup. This suggests a consistency of the brainstem responses to speech
across the participants. We also note that the out-of-the box models were
fitted using the data from all subjects, including those that did not yield a
significant reconstruction of the fundamental waveform in the speech-in-
quiet condition.

Potential real-world applications will also often require the decoding
of attention to a speaker that has not been encountered before. As an
important step in this direction, we showed that speaker-averaged
models that are trained on both attended speech signals, thereby
computing an attended model that was averaged over the different voi-
ces, still performed well and allowed to decode attention. Future work
could investigate how well these models generalise to speakers for which
no training data is available.

Another important feature for real-time attention decoding is that the
whole computational pipeline – from the processing of the audio signal to
the computation of reconstructed waveforms and the attention decoding
– can run online. Our reconstruction of the fundamental waveform
through a backward model, the assessment of its performance as well as
the subsequent attention decoding were all based on linear operations
that can easily run in real time. However, the EMD that we employed for
the computation of the fundamental waveform comes with large
computational costs. We therefore explored how a computationally much
simpler operation, band-pass filtering of the audio signal, performed
regarding the decoding of attention. Promisingly we found that this
method still allowed to decode attention from very short segments of
data, evidencing the potential for real-time decoding. While two band-
pass filters with different corner frequencies were applied to themale and
female voice, this approach could be extended to use filterbanks or use
online pitch estimation algorithms.

The decoding procedure that we developed relies on the correlation
between the reconstructed fundamental waveform from the brainstem
response and the actual fundamental waveform of the speech signal. The
obtained correlation coefficients are small, typically between 0.05 and
0.1 (Fig. 1-A, Fig. 2). Cortical responses allow to reconstruct the brain-
stem response from EEG recordings and yield somewhat higher correla-
tion coefficients. However, the attentional decoding based on the
brainstem responses that we show here is comparable to the decoding
based on the reconstructed speech envelope, obtained from 64 EEG
channels. A 16-s trial, for instance, yields an average decoding accuracy
of about 69%when based on the fundamental waveform, which is similar
to the corresponding decoding accuracy that was reported in several
previous studies (O'Sullivan et al., 2014; Biesmans et al., 2017; Bleichner
et al., 2016). We attribute this similarity of the attention decoding ac-
curacies to the rapidness of the brainstem response: because the brain-
stem response to speech occurs at the fundamental frequency of a voice,
it is ten-to hundredfold faster than the cortical response to the speech
envelope. This rapidness appears to compensate for the smaller magni-
tude of the response.

Although brainstem responses and cortical responses allow for simi-
larly efficient attention decoding when high-density EEG is available, the
decoding based on the brainstem response to speech may have advan-
tages when only a few channels are available. The accuracy of attention
decoding based on the speech envelope drops indeed below 80% for a
trial of at least 20 s when relying on subject-specific five-electrode
montages (Mirkovic et al., 2015; Fuglsang et al., 2017). Similarly, the
attention decoding based on the brainstem response that we have
developed here achieves an averaged accuracy of 69% when based on
three electrodes (TP9, TP10 and Cz) and on 16 s of data, and reaches 72%
when 32 s of data are available (Fig. 5-B). This good decoding perfor-
mance from a few EEG channels may be due to the effective capturing of
the brainstem response by sparse montages, as well as due to a consistent
dipole orientation across subjects (Dale and Sereno, 1993). Importantly,
we employed only band-pass filtering as a pre-processing step for the EEG
data. The simplicity of this attention decoding method and its good ac-
curacy when based on a few EEG channels may make this method
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attractive for practical applications.
The mixed-speaker stimuli that we employed were obtained by

superimposing two speech signals, and our decoding was based on the
knowledge of these separate voices. The individual components of a
complex acoustic scene are, however, in general not available and need
to be estimated from the acoustic mixture. The application of our method
for decoding attention to steer an auditory prosthesis towards an atten-
ded voice, for instance, will thus require to first segregate the different
voices that are present in the acoustic space, and to then determine the
focus of the user's attention. The segregation of the different individual
speakers may be achieved through multi-microphone arrays together
with methods such as beamforming (Gannot et al., 2001) or non-negative
blind source separation (Van Eyndhoven et al., 2017).

Certain applications may, however, not require the separation of
the individual voices from an acoustic mixture but have them already
available. Many locked-in patients, for instance, cannot communicate
overtly, not even through eye motion (Giacino et al., 2002). Current
brain-computer interfaces for them are mostly based on the P300
response, an evoked cortical potential that arises 300ms after the
occurrence of an oddball stimulus. It is typically elicited through visual
or through sound stimuli and requires a few seconds to achieve a single
binary response (Piccione et al., 2006; Nijboer et al., 2008; Schreuder
et al., 2011). A brain-computer interface based on auditory attention,
in contrast, could present a mixture of two auditory streams to the
patient. The patient could then answer a question with yes or no
through attending to a particular stream. Because the stimuli are
merely used as a locus of attention, they would be available individ-
ually beforehand, and could be engineered to enhance decoding speed.
Similarly, clinical assessments of the brainstem response to speech and
its modulation through selective attention can employ predefined
acoustic mixtures.

The decoding that we have described here is based on linear back-
ward models that reconstruct the fundamental waveform of the speech
signal from the EEG recordings. This method determined the brainstem
response to the voiced parts of speech, and in particular to its pitch, but
did not measure the brainstem response to the voiceless speech compo-
nents (Maddox and Lee, 2018). Improved performance may be obtained
through canonical correlation analysis that relates the neural recording
to more speech features in an optimized space (de Cheveign�e et al., 2018)
or through an artificial neural network that is able to extract highly
nonlinear relations between the two datasets (Yang et al., 2015).

Finally, decoding of auditory attention could leverage both cortical
and sub-cortical responses as they can be obtained from the same EEG
recordings. The framework for attentional decoding based on the
brainstem response to running speech presented here could be readily
extended to include cortical responses to the speech envelope, which
could boost the overall decoding accuracy. Moreover, measuring both
subcortical and cortical responses to speech from the same EEG data will
be useful for fundamental auditory research and clinical assessment of
hearing impairments.
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