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ABSTRACT

Modern speech enhancement (SE) networks typically implement
noise suppression through time-frequency masking, latent represen-
tation masking, or discriminative signal prediction. In contrast, some
recent works explore SE via generative speech synthesis, where the
system’s output is synthesized by a neural vocoder after an inher-
ently lossy feature-denoising step. In this paper, we propose a
denoising vocoder (DeVo) approach, where a vocoder accepts noisy
representations and learns to directly synthesize clean speech. We
leverage rich representations from self-supervised learning (SSL)
speech models to discover relevant features. We conduct a candidate
search across 15 potential SSL front-ends and subsequently train our
vocoder adversarially with the best SSL configuration. Additionally,
we demonstrate a causal version capable of running on streaming
audio with 10ms latency and minimal performance degradation.
Finally, we conduct both objective evaluations and subjective lis-
tening studies to show our system improves objective metrics and
outperforms an existing state-of-the-art SE model subjectively.

Index Terms— Speech enhancement, speech synthesis, self-
supervised learning, audio representations, deep learning

1. INTRODUCTION

Speech enhancement (SE), which intends to separate voice from un-
wanted interference, is an essential component of voice communi-
cation systems and has been a focus of research for decades. Mod-
ern SE systems are often powered by deep neural networks (DNNs)
for tasks such as telephony [1], speech coding [2], hearing assis-
tance [3, 4], and automatic speech recognition [5]. Existing DNN-
based SE approaches most commonly implement the framework of
supervised learning, in which the model is trained to output the clean
speech signal, given noisy input. As such, these models are typically
trained from scratch; with randomly-initialized weights

On the other hand, recent advancements in self-supervised learn-
ing (SSL) have led to the emergence of powerful models pre-trained
on large corpora capable of capturing transferable representations of
audio [6, 7, 8, 9, 10, 11]. Such SSL models can be used to obtain
rich representations useful for a variety of tasks. In particular, SSL
models are commonly applied in the context of automatic speech
recognition [6, 7] and paralinguistics [12, 13] as feature extractors,
especially in applications whereby task-specific data is scarce. How-
ever, the utility of SSL representations has not been as thoroughly
studied in the context of SE or speech synthesis.

Some works utilize the SSL models to act as deep perceptual
losses [14], which tend to improve the performance of SE models.
Meanwhile, other studies used pre-trained SSL representations as
inputs into an SE system. In [15], Huang et al. evaluate 13 dif-
ferent upstream models on a time-frequency masking-based speech
enhancement task. Following this work, Hung et al. [16] show that
performance can be boosted by concatenating self-supervised learn-

ing representations with raw acoustic features. In these cases, the
downstream model is an LSTM or BLSTM-based denoiser archi-
tecture and is responsible for generating the time-frequency masks,
which are applied to the noisy input.

While using SSL representations in the context of mask-based
SE can improve performance, we hypothesize that latent embeddings
may be more well-suited for directly synthesizing audio [17]. This is
motivated by the fact that deep SSL models decompose input into a
set of features not necessarily related to the short-time Fourier trans-
form (STFT) representation, typically used in the mask-based ap-
proaches. As such, using richer SSL features to compute the STFT
masks might limit the efficacy of the former in the context of SE.

Neural vocoders [18], such as WaveNet [19] or HiFiGAN [20],
have become adept at synthesizing high-quality speech from features
such as Mel spectrograms. Through varying methods, these mod-
els are able to produce audio with natural-sounding phase without
access to the original time-domain signal. As phase reconstruction
issues have been heavily discussed in the SE literature (e.g, [21])
neural vocoders present an attractive solution. In fact, several works
have approached speech enhancement through synthesis (SETS) in
this manner [22, 23]. However, these systems incorporate modules
tasked with denoising speech before resynthesis. We refer to this
type of approach as pre-denoising. We suggest that pre-denoising
modules are a potential bottleneck for several reasons. Cascading
modules are prone to compounding errors. If the pre-denoiser and
vocoder are trained separately, there exists potential for a mismatch.
The vocoder expects ”perfect” features, and the prediction model
will inevitably make mistakes, adversely affecting the resulting
speech quality.

Although joint training can help avoid compounding errors, the
process of pre-denoising is inherently lossy. In attempting to iso-
late the speech, the process may also corrupt other acoustic cues that
could be helpful for speech-noise separation and speech intelligibil-
ity preservation. Pre-denoising modules also add complexity, the
necessity of which has not been validated. We hypothesize neural
vocoders are powerful enough to perform speech enhancement from
noisy representations directly.

In this work, we explore the utility of applying pre-trained SSL
representation models to SETS. Unlike the previous exploration of
the use of SSL models in SE, we avoid mask-based subtractive noise
suppression by directly reconstructing the clean output from the SSL
model embedding of noisy input. Additionally, we avoid the pre-
denoising step in other SETS systems, instead opting for a denoising
vocoder (DeVo) approach. We benchmark the efficacy of existing
SSL models pre-trained on large datasets (and hand-crafted feature
baselines) in SE by coupling them with trainable denoising vocoders
to synthesize noise-free speech. Furthermore, we investigate the im-
pact of training strategy on performance and generalization. We
evaluate the proposed approaches using objective perceptual met-
rics, as well as through a subjective listening study.
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2. METHOD

We start by using SSL models as a basis to identify representa-
tion candidates directly suitable for enhancement through synthe-
sis. The models explored include wav2vec 2.0 [6], WavLM [7],
UniSpeech-SAT [8], HuBERT [9], Modified Contrastive Predictive
Coding (CPC) [10], and BYOL-A [11]. Several of these models
come in two sizes, Base and Large, and we use Base-sized models
where applicable. Most models consist of a convolutional feature en-
coder followed by either Transformer layers or an LSTM layer. For
these, we explore using both the full model and just the feature en-
coder. Several models also have “+” configurations which have been
trained with a larger amount of data that is more diverse. We evaluate
these models separately as candidates as well. We use the log-Mel
spectrogram (LMS) with a frame length of 1024, a hop length of 160
samples, and 128 Mel bins as a hand-crafted representation baseline.
All the encoders process audio inputs sampled at 16 kHz.

We use these models in combination with a neural vocoder, Hi-
FiGAN [20], to synthesize high-quality clean speech. The HiFiGAN
architecture consists of transposed convolutions which progressively
up-sample the input representation into a time-domain waveform
and convolutions with varying receptive fields which provide the
model with important context. If necessary, we up-sample repre-
sentations in time using nearest neighbor interpolation to match the
HiFiGAN resolution. Figure 1 depicts this framework.

Most of the surveyed SSL models contain a stack of Transformer
layers following the convolutional encoder. Since previous stud-
ies have shown that the last layer is not always the most useful for
a given task, we adopt the weighted sum approach following SU-
PERB [24]. This allows the model to emphasize or de-emphasize
information from different Transformer layers. The parameters of
the SSL models are fixed, and only the feature weights and vocoder
parameters are optimized during training (unless stated otherwise).

Additionally, we explore initializing HiFiGAN with pre-trained
weights optimized to synthesize clean speech from the Mel spectro-
grams. To accept representations with different feature dimensions,
the first layer of HiFiGAN must be altered. We adopt the cross-
modality pre-training approach proposed by [25] and average the
weights of the pre-trained first layer, then use this average to initial-
ize a new size-adapted input layer. In initial experiments, we found
that this has a negligible impact on feature weighting and training
stability, but the resulting audio output quality is higher. Thus, we
adopt this technique for all training setups in our candidate search.

3. EXPERIMENTAL SETUP

3.1. Dataset

We use the dataset from the Interspeech 2020 Deep Noise Suppres-
sion (MSDNS) Challenge [26] for training and testing. The training
dataset consists of 500+ hours of clean speech and 100+ hours of
noise. We mix the speech and noise at various SNR levels, sam-
pled from a uniform distribution between -5 and 15 dB. We em-
ploy a LUFS-based SNR calculation for more perceptually relevant
mixtures and to de-emphasize the effects of impulsive noises [27].
The evaluation dataset consists of 150 samples of noisy speech sam-
ples and their respective clean references. Though reverberant ver-
sions of these samples are available, we do not utilize these as de-
reverberation is outside of the scope of this work. In the interest
of comparison to other speech enhancement work, we also report
evaluation results on the Valentini et al. [28] dataset, which has 824
utterances mixed with noise across four SNR levels: 2.5, 7.5, 12.5,
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Fig. 1. DeVo system diagram. Components in blue are trainable and
those in grey have frozen weights (unless stated otherwise). Compo-
nents with dotted lines are only used for some SSL models.

and 17.5 dB. All the audio clips are sampled at 16 kHz.

3.2. Losses

HiFiGAN is trained adversarially and as adversarial training can be
slow and complex, we use a non-adversarial criterion for our can-
didate search, the Phase-Constrained Magnitude Loss (PCM) intro-
duced in [29], defined as

LPCM (s, ŝ) =
1

2
· LSM (s, ŝ) +

1

2
· LSM (n, n̂) (1)

where s and n are speech and noise, and LSM is a spectral magni-
tude loss defined as

LSM (s, ŝ) =
1

T · F

T−1∑
t=0

F−1∑
f=0

[(|Sr(t, f)|+ |Si(t, f)|)−

(|Ŝr(t, f)|+ |Ŝi(t, f)|)] (2)

where Sr and Si are the real and imaginary components of the Short-
Time Fourier Transform (STFT). We set the frame length and hop
length for the STFT to 1024 and 160, respectively.

Once a suitable candidate is found, we train this candidate with
HiFiGAN’s original loss [20]. As mentioned previously, HiFiGAN
is trained adversarially, and the generator (G) and discriminator (D)
objectives are defined as

LG = LAdv(G;D) + LFM + LMel(G) (3)
LD = LAdv(D;G) (4)

where LAdv , LFM , LMel(G) are the adversarial loss, feature
matching loss, and log-Mel spectrogram loss respectively. Our only
modification is adding an L1 noise estimation term to the log-Mel
spectrogram loss akin to the PCM loss in equation (1).



Table 1. Selected speech representations, their properties, and the
candidate search results. NE stands for noise exposure and indicates
models that have been pre-trained using noisy speech data. CFE in-
dicates convolutional feature encoders obtained from a larger model.
Dim. indicates the dimensionality of the SSL feature.

Representation NE CFE Dim. Params ∆PESQ
LMS - - 128 - 0.400
BYOL-A 3 7 3072 6.3M 0.259

HuBERT 7 7 768 95M 0.189
7 3 512 4.2M 0.286

Modified CPC 7 7 256 1.8M 0.448
7 3 256 1.5M 0.458

UniSpeech-SAT

7 7 768 95M 0.174
7 3 512 4.2M 0.417
3 7 768 95M 0.180
3 3 512 4.2M 0.187

Wav2Vec2 7 7 768 95M 0.206
7 3 512 4.2M 0.335

WavLM

7 7 768 95M 0.232
7 3 512 4.2M 0.344
3 7 768 95M 0.117
3 3 512 4.2M 0.234

3.3. Metrics

To find the most suitable SSL front-end, we initiate our investi-
gation by looking to Short-Time Objective Intelligibility (STOI)
[30] and Perceptual Evaluation of Speech Quality (PESQ) [31] as
our metrics. While STOI is often reported in SE literature, exper-
imentally we find that vocoder-denoised samples result in STOI
degradations, even if the samples are of high subjective quality (as
shown in our subjective listening study). Although [26] suggests
metrics, such as PESQ, do not always correlate well with perceptual
quality, we find it to be a coarse metric capable enough to point
the exploration in the right direction. Even if raw scores do not
exactly predict human perception, we find ∆PESQ to be indica-
tive of differences in model performance. ∆PESQ is defined as
PESQ(enhanced, clean) − PESQ(noisy, clean). In light of
this, we choose to rely on ∆PESQ for our candidate model selection.

In the evaluation of our adversarially trained models, we explore
a wider range of metrics: NISQAv2 [32], DNSMOS P.835 [33], and
Composite objective measures [34]. NISQAv2 and DNSMOS P.835
are deep learning-based non-intrusive perceptual quality predictors.
The former predicts a single MOS score and the latter outputs a score
for speech quality (SIG), background noise quality (BAK) and over-
all quality (OVRL). Composite scores (CSIG, CBAK, COVRL) are
similar to DNSMOS P.835 but utilize regression-based analysis on a
selection of objective measures in contrast to deep learning.

Since the human perception of sound is highly subjective and
non-linear, perceptual assessments are still considered the “golden
standard” in evaluating speech quality [33]. Thus, in addition to the
objective evaluation, we conduct a listening study using outputs of
various model variants presented to human raters. The study is based
on ITU-T P.808 [35] and employs 20 randomly selected noisy sam-
ples from the MSDNS test set [26], each processed using selected
approaches. Participants are asked to rate the overall quality of noisy
speech samples processed using different methods using a 5-point
Likert scale. The presentation order of unlabelled (i.e. double-blind)
audio clips is randomized for each participant.

4. RESULTS

4.1. Candidate Search

Table 1 shows the results of the SSL candidate search. From these
results, we can see that convolutional feature encoders tend to out-
perform models with Transformer layers. We also see that models
exposed to noise during training show no clear advantage over their
counterparts. In fact, in some cases the reverse is true.

Out of these candidates, we choose to further explore the feature
encoder of Modified CPC. Not only does it show the best perfor-
mance in terms of ∆PESQ, but it is the least computationally com-
plex of all the candidates. As we are also interested in efficiency for
the speech enhancement task, we conclude this is the optimal choice.

4.2. Encoder Feature Weighting

Figure 2 depicts the results of feature weighting for SSL models with
Transformer layers. We find that in all training variations, the first
layer output receives a much higher weight than all other outputs.
These results are similar to the findings in [15], which suggest earlier
Transformer layers contain the detailed acoustic information needed
for tasks like speech enhancement, and later layers are not as criti-
cal. This is also consistent with our findings in Section 4.1, where
convolutional encoders outperform Transformer layers in combina-
tion with convolutional encoders. Thus we suggest that for speech
synthesis and synthesis-based enhancement, either convolutional en-
coders or simply the first Transformer layer should be used.
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Fig. 2. SSL transformer layer weighting. The weights have been
unit-normalized for each model.

4.3. Adversarial Training

As the final stage of our investigation, we adopt an adversarial train-
ing regime with the feature encoder of Modified CPC. In this stage,
we evaluate the effect of fine-tuning by training two models, one
with a frozen encoder (Modified CPC) and one with a trainable en-
coder (Modified CPC FT). We find that finetuning the encoder in-
creases performance. We also evaluate the effect of making all oper-
ations in the model causal (Modified CPC FT-S), so that the system
may possibly be used in a real-time environment on streaming au-
dio. The causal configuration of the model outputs time-domain
audio in 10ms blocks with no overlap or lookahead, thus the to-
tal overall audio latency of the system is 10ms. For comparison to
these SSL based results, we also adversarially train the same DeVo
model configuration with log-Mel spectrogram (LMS) audio repre-
sentation. Table 2 depicts these results for the MSDNS test set, and
the Valentini test set. We observe that the fine-tuned model in both



Table 2. Results of adversarial training evaluation. FT indicates models in which Modified CPC is jointly finetuned with the denoising
vocoder. S indicates models with causal convolutions that are streaming-compatible.

Dataset Model Causal NISQAv2 DNSMOS P.835 Composite PESQ STOISig Bak Ovl Sig Bak Ovl

MSDNS

Noisy (unprocessed) - 2.53 3.39 2.33 2.34 3.19 2.53 2.35 1.58 0.92
LMS 7 4.21 3.51 3.96 3.21 3.19 1.91 2.37 1.63 0.86
Modified CPC 7 4.32 3.53 4.01 3.25 3.24 2.22 2.50 1.82 0.87
Modified CPC FT 7 4.34 3.56 3.99 3.26 3.69 2.60 2.96 2.26 0.91
Modified CPC FT-S 3 4.19 3.51 3.86 3.16 3.50 2.44 2.77 2.07 0.90

Valentini

Noisy (unprocessed) - 2.85 3.28 2.88 2.54 3.36 2.45 2.64 1.97 0.92
LMS 7 3.77 3.41 3.73 3.01 2.86 2.01 2.26 1.76 0.86
Modified CPC 7 3.81 3.42 3.77 3.03 3.09 2.23 2.47 1.94 0.87
Modified CPC FT 7 3.82 3.38 3.63 2.93 3.35 2.59 2.77 2.27 0.90
Modified CPC FT-S 3 3.78 3.28 3.55 2.81 3.17 2.46 2.59 2.10 0.89

cases has the strongest performance, across the vast majority of the
objective metrics, so we use this version in our listening study.

We observe that metric improvements across the board are
higher for MSDNS than Valentini, which can be attributed to the
overall higher SNRs of the noisy mixtures in Valentini, as compared
to the MSDNS dataset. We also note that across both datasets, the
increase in DNN-based perceptual quality predictors (DNSMOS
and NISQAv2) is generally higher than that of the traditional signal
processing correlation-based measures (PESQ, STOI, Composite).
In fact, STOI decreases in comparison to the noisy signal. We hy-
pothesize that this may be due to differences between the vocoder-
synthesized clean signal and the original clean signal which may
be imperceptible to humans but severely deleterious to correlation-
based metrics. We note that in experiments, we found that using
the HiFiGAN-re-synthesized output of a clean input as the reference
for STOI and PESQ resulted in significantly better scores, but a
comprehensive analysis of appropriate metrics for synthesis-based
enhancement is out of scope here. The incongruity between DNN-
based quality predictors and traditional objective metrics motivates
our subjective listening study.

4.4. Subjective Evaluation - Listening Study

For our perceptual listening study, we select the following condi-
tions: unprocessed noisy speech, clean speech, DeVo using LMS
features, DeVo using Modified CPC FT and Demucs1, a well-known
waveform-to-waveform SE system [1] also trained on MSDNS. Ta-
ble 3 illustrates the averaged mean opinion scores (MOS) [35] as-
signed to each method by N = 22 independent raters across 20 au-
dio samples. Firstly, all of the methods improve MOS by at least 0.72
with the smallest improvement by LMS. Demucs and Modified CPC
FT perform considerably better and further improve the MOS by
another 0.72 and 0.94, respectively (1.44 & 1.66 total w.r.t. noisy).
To assess the significance of these differences we conduct one-way
ANOVA with posthoc paired t-tests corrected for multiple compar-
isons using Benjamini-Yekutieli method [36]. The ANOVA indi-
cates a significant difference between conditions (p < 10−33) and
all the pair-wise differences between methods are significant at p <
0.013 (corrected). Additionally, we make the audio samples from
our perceptual study available for listening2.

1https://github.com/facebookresearch/denoiser
2https://github.com/BoseCorp/devo

Table 3. Results of the P808 listening study (N = 22)

Method MOS
Noisy (unprocessed) 1.86
LMS 2.58
Demucs [1] 3.30
Modified CPC FT 3.52
Clean 4.48

5. CONCLUSION

In this paper, we proposed that neural vocoding, when combined
with a rich input feature, could be powerful enough to achieve speech
enhancement without pre-denoising the speech or speech feature, a
step that may limit the expressivity of the overall system. We utilized
several different SSL models as a framework to explore input repre-
sentations for this task and presented the results of our candidate
search. We demonstrated that our synthesis-based model can run
in a causal configuration with only slight degradation in objective
metrics. Finally, we conducted a perceptual listening study to verify
the quality of our model with human raters. Our results suggest: 1)
Denoising vocoders are indeed capable of speech enhancement. 2)
Earlier layers in SSL models tend to be better for the synthesis task.
3) The approach can achieve comparable or better results than other
state-of-the-art speech enhancement methods. In the future, we hope
to analyze the properties of the SSL representations to reveal the rea-
sons for their differences in performance. Additionally, we would
like to explore DeVo for other speech tasks such as dereverberation
and bandwidth extension.
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