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Abstract

Transient loud intrusions, often occurring in noisy environ-

ments, can completely overpower speech signal and lead to an

inevitable loss of information. While existing algorithms for

noise suppression can yield impressive results, their efficacy re-

mains limited for very low signal-to-noise ratios or when parts

of the signal are missing. To address these limitations, here

we propose an end-to-end framework for speech inpainting, the

context-based retrieval of missing or severely distorted parts

of time-frequency representation of speech. The framework is

based on a convolutional U-Net trained via deep feature losses,

obtained using speechVGG, a deep speech feature extractor pre-

trained on an auxiliary word classification task. Our evaluation

results demonstrate that the proposed framework can recover

large portions of missing or distorted time-frequency represen-

tation of speech, up to 400 ms and 3.2 kHz in bandwidth. In

particular, our approach provided a substantial increase in STOI

& PESQ objective metrics of the initially corrupted speech sam-

ples. Notably, using deep feature losses to train the framework

led to the best results, as compared to conventional approaches.

Index Terms: Speech inpainting, speech retrieval, speech en-

hancement, deep learning, deep feature loss

1. Introduction

Recent major achievements in the field of speech enhancement

(SE) have been mainly attributed to deep learning [1, 2, 3]. In

particular, these new approaches tend to outperform traditional

statistical SE systems, especially for high-variance noises [4, 5].

SE algorithms based on deep neural networks (DNNs) typically

belong to one of the following groups: (i) causal systems that

maintain the conventional approach of speech and noise estima-

tion for spectral subtraction methods [6, 7, 8] and (ii) end-to-

end systems, including generative approaches, that are usually

non-causal and require longer temporal integration windows

[9, 10, 11]. Both approaches are capable of suppressing non-

stationary noise, even at relatively low signal-to-noise ratios

(SNRs). However, they rarely consider cases involving tran-

sient high-amplitude noise intrusions, which may completely

overpower the speech signal. In such cases, the corrupted por-

tion of the signal is inevitably lost and can only be restored.

To address the existing knowledge gap, here, we consider

the task of speech inpainting, the context-based recovery of

missing or severely degraded information in time-frequency

representation of natural speech. The problem of generative,

context-based, information recovery has been traditionally in-

vestigated in the field of computer vision, whereby it’s referred

to as image completion or inpainting [12, 13, 14]. A similar

problem was formulated in the field of audio processing and

named, by analogy, audio inpainting. The problem was origi-

nally studied with only short time gaps [15]. More recent ap-

proaches reported new promising results but only with music

and musical instruments [16, 17], not natural speech. Building

on the existing audio inpainting, here, we introduce an end-to-

end speech inpainting system for recovering missing or severely

degraded parts of time-frequency representation of speech.

We simulated the degradation of speech signals by masking

their time-frequency representations. The applied masks repre-

sented either (i) time gaps, similar to packet loss [18, 19], but

with long intrusions of up to 400 ms in duration, (ii) frequency

gaps, related to the bandwidth extension problem [20, 21] but

with missing frequency bins summing up to 3200 Hz in band-

width or (iii) irregular, random gaps disrupting up to 40% of the

overall time-frequency representation of 1-second-long speech

segments. According to the authors’ knowledge, this problem,

at such scale, was not investigated in the past. Notably, a SE

system that could recover missing or severely degraded parts of

time-frequency representations of speech, of arbitrary shapes,

has not been proposed to date.

To tackle the problem of speech inpainting we used an end-

to-end DNN with the U-Net architecture [22]. According to

recent studies, the use of deep feature losses for training SE sys-

tems can improve their overall performance, depending on the

feature extraction approach [23, 24, 25]. We hypothesized that

a specialized feature extractor, tailored specifically for speech

processing, would provide the best performance of the trained

system. Thus, we employed speechVGG [26], a deep speech

feature extractor based on the classic VGG-16 architecture [27]

and pre-trained on an auxiliary word classification task. We

considered two configurations of the framework for informed

and blind inpainting, depending on the availability of masks

indicating missing or degraded parts of time-frequency repre-

sentation of speech. In the case of blind speech inpainting, we

evaluated the system using different types of intrusions, by re-

placing or adding high-amplitude noise to the masked parts of

time-frequency representation of speech. Performance of the

proposed approach was compared to a baseline based on the

linear predictive coding (LPC) extrapolation algorithm [28].

2. Materials & methods

2.1. Data & preprocessing

We performed all of our experiments using LibriSpeech corpus,

the open dataset of read English speech sampled at 16 kHz [29].

We used the train-clean-100 subset to train, test-clean subset to

monitor the training performance and dev-clean, as a held-off

data to evaluate all the models explored in this work. All avail-

able speech recordings were chunked into 1024-ms-long seg-

ments, without overlap. The time-frequency representation of

each segment was obtained using a complex short-time Fourier
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transform (STFT, 256 samples window with 128 samples over-
lap, 128 frequency bins), resulting in a 128 x 128 matrix. The
log-magnitude of each time-frequency bin was obtained by tak-
ing an absolute value of a complex number and computing its
natural logarithm, and the phase, by computing its angle. Log-
magnitude of each frequency channel was normalized using the
mean and standard deviation obtained from the training data.

2.2. Speech inpainting task

In the task of speech inpainting, we simulated the degradation
of speech signal by applying masks to the STFTs, obtained as
specified in section 2.1. We considered three types of masks
covering a specific portion of time-, time & frequency informa-
tion, or a random arbitrary combination of the two (Fig. 1). For
time and time & frequency masks, the percentage indicated the
masked portions of time and frequency bins, and in the random
case, the overall mask coverage (i.e. area of the STFT). Each
mask was randomly distributed between 1 to 4 blocks covering
time and frequency bins, none shorter than 3 bins (24 ms or
187.5 Hz bandwidth). Number of blocks and their placement
were each time drawn from uniform distributions. The mask
was applied equivalently to the STFT magnitude and phase.

We trained our speech inpainting system to recover speech
samples (from train-clean-100) distorted using time & fre-
quency or random masks. For each training sample, the type
of mask was assigned randomly with equal probability. Size of
each mask used in training was drawn from the normal distri-
bution N(µ = 29.4%, σ = 9.9%). The speech inpainting per-
formance of the trained system was evaluated using the held-off
dev-clean data and mask sizes ranging from 10% (total: 100
ms, 800 Hz bandwidth), up to 40% (total: 400 ms, 3200 Hz
bandwidth). Speech samples from the held-off evaluation data
were masked, processed through the trained speech inpainting
system and reconstructed back to time-domain (i.e. waveform).
The short term objective intelligibility (STOI) [30] and percep-
tual evaluation of speech quality (PESQ) [31], measured be-
tween the processed and the original (i.e. non-masked) speech
samples, were used to quantify the inpainting performance.

Figure 1: Examples of speech inpainting. Masked parts of STFT
log-magnitudes of speech are either removed (left) or replaced
(middle), as well as, mixed with high-amplitude noise (right).
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Figure 2: The speech inpainting framework is composed of the
U-Net for speech inpainting (left, see 2.3 for details) and VGG-
like deep feature extractor (right). Deep feature losses LDF

for training the U-Net are obtained by computing the L1 dis-
tance between the representations of the recovered and the ac-
tual STFT log-magnitudes at pooling layers concluding each
block of the feature extractor (see 2.4 for details).

2.3. U-Net for speech inpainting

The main part of the proposed speech inpainting framework
was an end-to-end DNN with a U-Net architecture [22]. The
DNN was applied to restore missing or degraded parts of the
log-magnitude of speech STFTs (Fig. 1), obtained, as describe
in sections 2.1 & 2.2. The phase information was discarded and
not used by our model. To reconstruct the processed sample
back to time domain, its phase was estimated directly from the
magnitudes via the local weighted sums algorithm [32, 33].

The diagram of the system is presented in Fig. 2. Our U-Net
was composed of six encoding (blue, Fig. 2) and seven decod-
ing blocks (green, Fig. 2). Each encoding block consisted of a
2D convolution layer with a stride 2 and ReLU activation. In
turn, each decoding block upsampled its input through a 2D up-
sampling layer with a kernel size 2, effectively doubling its size.
Such upsampled input was subsequently concatenated with the
input to the corresponding encoding block. The concatenated
set of features was then processed through a 2D convolution
(stride 1) with leaky ReLU activation (α = 0.2) [34]. Batch
normalization [35] was applied after each 2D convolution layer
across the network. The final decoding block was a 1D con-
volution with a linear activation function returning the restored
version of the distorted input speech sample. Parameters of our
U-Net’s convolution layers are listed in Table 1.

We considered two versions of the framework: performing
informed and blind speech inpainting. In the informed case, the
mask corrupting the input was known and all 2D convolutions in
the network were replaced with partial convolutions (PC) [14],
which processed only valid (non-masked) parts of their input
and ignored the rest. We also wanted to explore whether the
framework can simultaneously identify and restore missing or
degraded parts of the input. In such case, all convolution layers
in the U-Net performed standard, full, 2D convolutions (FC)
and we refer to such setup as the blind speech inpainting. Other
than that, the two configurations of the network were identical.

3277



Table 1: Parameters of the model’s convolution layers. Block 0

represents the final 1D convolution (conv1d in Fig. 2).

(kernel size, number of filters)

Block Encoding - conv Decoding - dconv

0 - (1,1)

1 (7, 16) (3, 1)

2 (5, 32) (3, 16)

3 (5, 64) (3, 32)

4 (3, 128) (3, 64)

5 (3, 128) (3, 128)

6 (3, 128) (3, 128)

2.4. Deep feature loss training

We used speechVGG [26] as a deep feature extractor for train-

ing the speech inpainting framework. The extractor was based

on the VGG-16 convolutional DNN architecture [27] and con-

sisted of five main blocks (Fig. 2, yellow), each concluded by

a max-pooling layer. We pre-trained the speechVGG to clas-

sify 1000 most frequent, at least four-letters-long, words from

the training data. The samples for pre-training were processed

as specified in section 2.1, augmented using SpecAugment [36]

and randomly padded with zeros to a size of 128 x 128.

We trained the framework for speech inpainting using deep

feature losses LDF [23, 24, 25] (Fig. 2, grey), computed via

the pre-trained speechVGG feature extractor. For each train-

ing sample, the U-Net was applied to recover the degraded in-

put. The reconstructed (Ŷ ) and the original (Y ) log-magnitude

STFTs were then processed through the speechVGG extractor.

Activation of all five of the extractor’s pooling layers E, one at

the end of each block (Fig. 2, yellow) were obtained for the re-

constructed E(Ŷ ) and actual E(Y ) samples. Subsequently, the

deep feature loss LDF was computed as the L1 loss between

the two representations:

LDF = L1(E(Y ), E(Ŷ )) (1)

We compared the performance of the inpainting framework

trained with deep feature losses obtained through: (i) the pre-

trained speechVGG extractor (speechVGG), (ii) the original

VGG-16 network pre-trained to classify images from the Im-

ageNet dataset [27, 37] (imgVGG) or (iii) without deep feature

losses, but the direct L1, per-pixel loss, between the original

and the recovered STFT log-magnitudes: L1(Y, Ŷ ) (noVGG).

2.5. Linear predictive coding baseline

Inspired by Marafioti, et al. [17], we compared the performance

of different configurations of the proposed deep speech inpaint-

ing framework (see section 2.4) to the well-established LPC ex-

trapolation algorithm [28]. The LPC was applied in the time

domain, to recover missing parts of speech samples, given the

signal surrounding each intrusion. While the LPC method was

suitable for known and well-defined, temporal intrusions we

couldn’t find a meaningful way to apply it for recovering sam-

ples distorted with random irregular masks of arbitrary shapes.

This highlights the flexibility of our end-to-end system, as com-

pared to conventional time-domain approaches [17, 19, 28].

2.6. Implementation details

The speechVGG was pre-trained using cross-entropy loss for

50 epochs with a fixed learning rate set to 5 × 10−5. Each

considered configuration of the U-Net for speech inpainting was

trained for 30 epochs using either deep feature- (LDF ) or per-

pixel- (L1) loss with a fixed learning rate of 2× 10−4. ADAM

optimizer [38] was used in all the training routines.

3. Results

3.1. Informed speech inpainting

The first experiment assessed the performance of the proposed

framework in the informed speech inpainting task when the ex-

act masks were known. Here, masked parts of the inputs were

replaced with zeros, reflecting missing information and the sys-

tem was using partial convolutions [14], which ignored masked

parts of their inputs. Unprocessed, corrupted speech samples

(Gaps) and the case when their masked parts were filled with

speech-shaped noise (Noise), derived from the original speech

signal, served as a reference to compare other methods against.

The complete evaluation results are presented in Table 2.

Each configuration of the proposed framework improved both

STOI and PESQ for all the considered shapes and sizes of in-

trusions, as compared to the distorted case with either zeros-

or noise-filled gaps. The use of deep feature losses in training

yielded better results, as compared to the case when the U-Net

was trained via direct, per-pixel, L1 loss (noVGG). However,

only the speechVGG (speechVGG), not the VGG-16 pre-trained

on the ImageNet data (imgVGG), led to particularly notable im-

provements in STOI & PESQ. The proposed framework trained

with the speechVGG consistently outperformed the baseline

LPC algorithm (LPC) in terms of STOI, suggesting better re-

covery of speech intelligibility. For PESQ scores, the advantage

of our method was consistent but smaller. Surprisingly, for the

largest time-frequency masking (40%) the LPC achieved sub-

stantially lower STOI, but it was the only case when it yielded

slightly higher PESQ, as compared to our approach.

3.2. Blind speech inpainting

In the blind speech inpainting, the masks disrupting the input

speech were not known and the system was trained to simul-

taneously identify and recover distorted portions of the input.

We considered three different scenarios by setting the masked

values of the input STFT log-magnitudes to either zero (-gaps,

Fig. 1, left), white noise (-noise, Fig. 1, middle) or a mixture of

the original information and the noise (-additive, Fig. 1, right).

The noise was added directly to the STFT log-magnitudes and

its amplitude was set to provide transient mixtures at the very

low SNRs, below -10 dB (i.e. very disruptive noise level).

In this experiment, we used the best overall configuration of

the system from the previous experiment, namely speechVGG.

The network setup remained the same, expect all partial convo-

lutions (PC) were replaced with regular, full 2D convolutions

(FC), as specified in section 2.3. The framework was re-trained

and re-evaluated separately for each type of intrusion (-gaps, -

noise, -additive). Other than that, the training and evaluation

routines remained the same as in the informed case.

The complete evaluation results are presented in Table 3.

All of the considered framework configurations successfully re-

covered missing or degraded parts of the input speech resulting

in improved STOI and PESQ scores. The framework for the

informed inpainting (PC-gaps) yielded better results, as com-

pared to its blind counterpart, when the masked parts of the in-

put were set to either zeros or random noise (FC -gaps, -noise,

respectively). Notably, when input speech was mixed with, not

replaced by, the high-amplitude noise, the framework operating
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Table 2: Informed speech inpainting (section 3.1). STOI & PESQ were computed between the recovered and the actual speech segments

from the validation set and averaged. The best scores were denoted in bold. See section 2.4 for training configurations.

Gaps Noise LPC noVGG imgVGG speechVGG

Intrusion Size STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ

Time

10% 0.893 2.561 0.901 2.802 0.921 2.798 0.926 3.118 0.917 3.117 0.938 3.240

20% 0.772 1.872 0.800 2.260 0.842 2.483 0.879 2.755 0.860 2.713 0.887 2.809

30% 0.641 1.476 0.688 1.919 0.750 2.233 0.805 2.428 0.779 2.382 0.811 2.450

40% 0.536 1.154 0.598 1.665 0.669 2.015 0.724 2.171 0.695 2.109 0.730 2.179

Time

+

Freq.

10% 0.869 2.423 0.873 2.575 0.887 2.692 0.905 2.921 0.899 2.915 0.920 3.034

20% 0.729 1.790 0.746 2.010 0.780 2.378 0.845 2.518 0.829 2.491 0.853 2.566

30% 0.598 1.391 0.629 1.653 0.668 2.128 0.765 2.158 0.743 2.134 0.772 2.178

40% 0.484 1.053 0.520 1.329 0.566 1.907 0.672 1.840 0.644 1.809 0.680 1.845

Random

10% 0.880 2.842 0.892 3.063

N/A

0.941 3.477 0.927 3.399 0.944 3.496

20% 0.809 2.233 0.830 2.543 0.912 3.079 0.897 3.040 0.918 3.114

30% 0.713 1.690 0.745 2.085 0.872 2.702 0.856 2.680 0.878 2.735

40% 0.644 1.355 0.682 1.802 0.837 2.443 0.823 2.422 0.846 2.479

Table 3: Blind speech inpainting (section 3.2). STOI & PESQ were computed between the recovered and the actual speech segments

from validation set and averaged. The best scores were denoted in bold. PC - informed (partial conv.), FC - blind (full conv.) inpainting.

Gaps Noise PC - gaps FC - gaps FC - noise FC - additive

Intrusion Size STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ

Time

10% 0.893 2.561 0.901 2.802 0.938 3.240 0.930 3.191 0.919 3.066 0.933 3.216

20% 0.772 1.872 0.800 2.260 0.887 2.809 0.875 2.725 0.863 2.677 0.906 2.971

30% 0.641 1.476 0.688 1.919 0.811 2.450 0.798 2.384 0.792 2.374 0.882 2.788

40% 0.536 1.154 0.598 1.665 0.730 2.179 0.714 2.086 0.707 2.072 0.854 2.617

Time

+

Freq.

10% 0.869 2.423 0.873 2.575 0.920 3.034 0.911 3.000 0.896 2.859 0.912 3.023

20% 0.729 1.790 0.746 2.010 0.853 2.566 0.840 2.490 0.828 2.411 0.885 2.759

30% 0.598 1.391 0.629 1.653 0.772 2.178 0.757 2.108 0.743 2.041 0.854 2.562

40% 0.484 1.053 0.520 1.329 0.680 1.845 0.665 1.772 0.659 1.787 0.828 2.413

Random

10% 0.880 2.842 0.892 3.063 0.944 3.496 0.932 3.442 0.917 3.272 0.932 3.435

20% 0.809 2.233 0.830 2.543 0.918 3.114 0.904 3.061 0.887 2.897 0.910 3.117

30% 0.713 1.690 0.745 2.085 0.878 2.735 0.869 2.701 0.853 2.596 0.891 2.893

40% 0.644 1.355 0.682 1.802 0.846 2.479 0.832 2.412 0.813 2.307 0.868 2.664

in the blind setup (FC-additive) led to the best results for larger

intrusions of all the considered shapes. These results suggest

that the framework for the blind speech inpainting takes advan-

tage of the original information underlying the noisy intrusions,

even when the transient SNR is very low (below -10 dB).

4. Discussion

The proposed framework is capable of recovering missing or

degraded parts of time-frequency representations of speech, as

indicated by the substantial improvements in STOI and PESQ

scores. Notably, intrusions used in the evaluation were as large

as 400 ms (i.e. the duration of a syllable or a short word) and

3.2 kHz in bandwidth. We showed that employing deep feature

losses in training leads to better results as compared to con-

ventional methods. However, only the speech-specific feature

extractor speechVGG applied to obtain deep feature losses, un-

like imgVGG pre-trained on a visual task, led to the improved

performance. Our results suggest that the proposed system can

simultaneously identify degraded parts of the input speech and

recover them. In particular, our system for blind speech inpaint-

ing improved STOI and PESQ scores of degraded speech, both

when parts of the time-frequency representation were missing,

as well as, distorted by the additive noise.

Importantly, our experiments employing additive noise rep-

resented only a simplified scenario. In future experiments, a

broader range of ecological noises shall be considered to assess

the framework performance in the joint speech denoising and

inpainting task. Our approach could further benefit from in-

corporating phase information as an additional input feature for

the DNN. We indeed experimented in this domain but none of

our several attempts of utilizing the STFT phase in the frame-

work outperformed the proposed approach. The limited phase

reconstruction capacity may be underlying the only case when

the LPC-based algorithm yielded higher PESQ score than our

approach. Despite low STOI, the time-domain LPC reinforced

phase consistency and although the recovered speech was unin-

telligible, its quality was quantified as disproportionately better.

5. Conclusion

We introduced a novel end-to-end framework for recovering

large portions of missing or degraded time-frequency represen-

tation of natural speech. Our system provided substantial im-

provements in STOI & PESQ metrics, both when the position

of intrusions in time and frequency were known (informed-) or

not (blind inpainting). The DNN at the core of our system bene-

fited from being trained via deep feature losses. Computing the

loss through speechVGG, a pre-trained speech feature extractor,

led to the best results. We believe that the proposed approach

can be integrated with the existing SE systems and contribute to

the development of the next-generation general-purpose SE.

Demo of the deep speech inpainting is available at1. Python

implementation of the speechVGG and pre-trained models are

openly available at2.
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