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a b s t r a c t 

Transcranial alternating current stimulation (tACS) can non-invasively modulate neuronal activity in the cere- 

bral cortex, in particular at the frequency of the applied stimulation. Such modulation can matter for speech 

processing, since the latter involves the tracking of slow amplitude fluctuations in speech by cortical activity. 

tACS with a current signal that follows the envelope of a speech stimulus has indeed been found to influence the 

cortical tracking and to modulate the comprehension of the speech in background noise. However, how exactly 

tACS influences the speech-related cortical activity, and how it causes the observed effects on speech compre- 

hension, remains poorly understood. A computational model for cortical speech processing in a biophysically 

plausible spiking neural network has recently been proposed. Here we extended the model to investigate the 

effects of different types of stimulation waveforms, similar to those previously applied in experimental studies, 

on the processing of speech in noise. We assessed in particular how well speech could be decoded from the neural 

network activity when paired with the exogenous stimulation. We found that, in the absence of current stimu- 

lation, the speech-in-noise decoding accuracy was comparable to the comprehension of speech in background 

noise of human listeners. We further found that current stimulation could alter the speech decoding accuracy 

by a few percent, comparable to the effects of tACS on speech-in-noise comprehension. Our simulations further 

allowed us to identify the parameters for the stimulation waveforms that yielded the largest enhancement of 

speech-in-noise encoding. Our model thereby provides insight into the potential neural mechanisms by which 

weak alternating current stimulation may influence speech comprehension and allows to screen a large range of 

stimulation waveforms for their effect on speech processing. 
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. Introduction 

Naturalistic listening environments are often noisy. Talking to a
riend in a busy pub or restaurant, for instance, means that we need
o ignore other distracting sounds around us. However, humans ex-
el at this challenging task: we can still understand speech even when
he background noise becomes louder than the target signal itself
 Hutcherson et al., 1979 ; Drullmana, 1995 ; Soli and Wong, 2008 ;
nderson and Kraus, 2010 ). 

This remarkable performance partly involves the tracking of am-
litude fluctuations in speech by cortical activity ( Hickok and Poep-
el, 2007 ; Morillon et al., 2012 ; Mesgarani et al., 2014 ; Han et al.,
019 ). In particular, the neural oscillations in the delta (1 - 4 Hz) and
heta (4 - 8 Hz) frequency ranges become correlated with the acoustic
nvelope of a speech stimulus ( Lalor and Foxe, 2010 ; Kubanek et al.,
013 ; Molinaro and Lizarazu, 2018 ; Brodbeck and Simon, 2020 ). They
an thereby track the rhythm set by words (in the delta range) and
y syllables (in the theta range). When a speech stimulus is ob-
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cured by background noise, such as a competing speaker, this low-
requency cortical tracking can predict speech discrimination perfor-
ance ( Luo and Poeppel, 2007 ), selective attention ( Zion Golumbic

t al., 2013 ; O’Sullivan et al., 2015 , 2017 ), speech intelligibility
 Vanthornhout et al., 2018 ; Lesenfants et al., 2019 ) and comprehension
 Etard and Reichenbach, 2019 ; Iotzov and Parra, 2019 ). The delta and
heta frequency band thereby play different roles: cortical tracking in
he theta band is linked to lower-level acoustic processing of the speech
timulus, while delta-band tracking can inform on higher-level aspects
uch as the processing of semantic and syntactic information ( Ding et al.,
016 ; Broderick et al., 2018 ; Etard and Reichenbach, 2019 ). 

Neural tracking of speech features has also been demonstrated in a
igher frequency band, the gamma band. It contains activity above 25
z and can encode phonemes, the basic units of speech ( Shamir et al.,
009 ; Gross et al., 2013 ). A recent hypothesis postulates that speech
rocessing occurs through a cross-frequency coupling of cortical oscilla-
ions ( Giraud and Poeppel, 2012 ; Gross et al., 2013 ). According to this
ypothesis, the cortical activity in the theta band parses speech into
ober 2020 
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maller units, presumably syllables ( Giraud et al., 2007 ; Ghitza, 2011 ).
he theta activity then modulates the cortical responses in the gamma
ange, thus providing temporal frames for the phonemic encoding. 

Transcranial alternating current stimulation (tACS) provides a non-
nvasive means to influence cortical activity in humans, in particular
t the frequency of the stimulation ( Zaehle et al., 2010 ; Reato et al.,
013 ; Helfrich et al., 2014 ; Ruhnau et al., 2016 ; Krause et al., 2019 ).
inewave tACS combined with the rhythmic presentation of a speech
timulus has indeed been shown to affect the cortical responses to speech
 Zoefel et al., 2018 ). Moreover, tACS with the speech envelope im-
acts behaviour as well: the comprehension of speech in noise can be
odulated through concurrent neurostimulation ( Wilsch et al., 2018 ;
adir et al., 2020 ; Keshavarzi and Reichenbach, 2020 ; Keshavarzi et al.,
020 ). The modulation is modest, up to a few percent in the compre-
ension scores. It results from the theta but not the delta portion of the
peech envelope, indicating that the stimulation may act on the syllable
arsing ( Keshavarzi et al., 2020 ). Moreover, the current stimulation in
he theta band can boost the comprehension of speech in background
oise beyond that observed during sham stimulation ( Keshavarzi and
eichenbach, 2020 ; Keshavarzi et al., 2020 ). 

The experimental data regarding the effect of tACS with the speech
nvelope on speech comprehension show, however, certain inconsisten-
ies. Two key variables that have been explored when applying tACS
imultaneous to speech in noise are the delay between the current wave-
orm and the speech envelope, as well as a potential phase shift between
hese two signals. Some studies found that the value of the stimula-
ion parameter, either of the delay or of the phase shift, that yielded
he highest speech comprehension varied considerably between subjects
 Riecke et al., 2018 ; Wilsch et al., 2018 ). These results suggest that the
urrent stimulation acts on a cortical source that is highly variable from
ubject to subject. In contrast, other studies found that the optimal delay
nd phase shift of the current waveform with respect to the speech sig-
al were similar across different study participants ( Kadir et al., 2020 ;
eshavarzi and Reichenbach, 2020 ; Keshavarzi et al., 2020 ). The incon-
istencies between these different investigations provide additional mo-
ivation for better understanding the functional mechanisms by which
ACS influences speech comprehension. 

Computational modelling offers a promising route to investigate the
ffects of non-invasive brain stimulation ( Fröhlich and Schmidt, 2013 ;
estmann et al., 2015 ; Bonaiuto and Bestmann, 2015 ; Fröhlich, 2015 ;
röhlich et al., 2015 ). Well-established finite-element models that are
ased on structural imaging data are, for instance, used to estimate
he distribution of electrical current in the brain ( Datta et al., 2009 ;
uang et al., 2019 ). They allow to optimize the placement of electrodes
n the scalp and can explain some inter-subject variability ( Huang and
arra, 2019 ; Kasten et al., 2019 ). They do, however, not provide infor-
ation on the functional mechanisms by which the current stimulation

nfluences the neural network activity underlying the behavioural ef-
ects. 

The functional influence of current stimulation can be addressed
hrough biophysically-plausible spiking neural network models com-
ined with a model of how each neuron’s activity is affected by a weak
urrent ( Reato et al., 2010 ; Ali et al., 2013 ; Herrmann et al., 2016 ;
akan and Obermayer, 2020 ). Recent effort in this direction has, for

nstance, uncovered that tACS can act on cortical oscillations through
eriodic forcing ( Fröhlich and McCormick, 2010 ; Reato et al., 2010 ;
errmann et al., 2016 ; Cakan and Obermayer, 2020 ) as known from
ther nonlinear dynamical systems ( Pikovsky et al., 2001 ). However,
he functional mechanisms of current stimulation in relation to sensory
rocessing have not yet been investigated computationally. 

Here, we introduce a framework for modelling the effects of external
lectrical stimulation, similar to tACS, on the neural encoding of speech
n background noise. Our computational work is based on a recently in-
roduced model of speech encoding through coupled cortical oscillations
n the theta and in the gamma frequency ranges ( Hyafil et al., 2015 ).
 c  
e show that the model can be used to describe the encoding of speech
n background noise. We then extend it to include the effects of alter-
ating current stimulation and employ it to investigate the mechanism
y which current stimulation affects the speech encoding. 

. Methods 

.1. Computational model of speech encoding 

We employed a computational model for speech encoding in a spik-
ng neural network ( Hyafil et al., 2015 ). The model consisted of two
odules of spiking neurons that generated endogenous oscillations in

he theta (4 - 8 Hz) and in the gamma (25 - 40 Hz) frequency ranges
 Fig. 1 A). The gamma oscillations resulted from a Pyramidal Interneuron
amma (PIN-G) module ( Jadi and Sejnowski, 2014 ). In this well estab-

ished and experimentally validated model, a group of excitatory neu-
ons and another group of inhibitory neurons are reciprocally connected
o each other to generate oscillations ( Brosch et al., 2002 ; Cardin et al.,
009 ; Sohal et al., 2009 ; Ray and Maunsell, 2011 ). Since the mecha-
isms of the neural activity in the theta frequency range remain un-
nown ( Ainsworth et al., 2011 ), the theta-generating module was de-
igned analogously to the gamma module, but with adjusted parameters
uch as slower time scales, and was referred to as PIN-TH model. 

The spiking neural network model contained 84 leaky integrate-
nd-fire neurons of four distinct types: gamma excitatory neurons ( Ge,

 Ge = 32 cells), gamma inhibitory neurons ( Gi, N Gi = 32 cells), theta
xcitatory neurons ( Te, N Te = 10 cells) and theta inhibitory neurons ( Ti,

 Ti = 10 cells). The first two types of neurons formed the PIN-G module,
nd the second two types belonged to the PIN-TH module. 

The temporal evolution of the membrane potential V i of neuron i is
escribed by the following equation: 

 

𝑑 𝑉 𝑖 

𝑑𝑡 
= 𝑔 𝐿 

(
𝑉 𝐿 − 𝑉 𝑖 

)
+ 𝐼 𝑆𝑌 𝑁 

𝑖 
+ 𝐼 𝐼 𝑁 𝑃 

𝑖 
+ 𝐼 𝐸 𝑋 𝑇 

𝑖 
+ 𝐼 𝐷𝐶 

𝑖 
+ 𝜂, (1)

n which C is the capacitance of the cellular membrane, g L and V L are
he conductance and the reversal potential of the leak current; 𝐼 𝑆𝑌 𝑁 

𝑖 
,

 

𝐼 𝑁 𝑃 
𝑖 

, 𝐼 𝐸 𝑋 𝑇 
𝑖 

and 𝐼 𝐷𝐶 
𝑖 

are the synaptic, stimulus-induced, exogenous and
onstant currents delivered to the cell, and 𝜂 is a Gaussian noise with
ariance 𝜎i . When the membrane potential of the i th neuron reached
he threshold V THR a spike was generated and V i returned to the reset
otential V RESET . 

The dynamics of synaptic currents between neurons were modelled
s follows: 

𝑑𝑥 𝑅 
𝑖𝑗 

𝑑𝑡 
= − 

𝑥 𝑅 
𝑖𝑗 

τ𝑅 
𝑗 

+ δ
(
𝑡 − 𝑡 𝑆𝑃𝐾 

𝑗 

)
, (2)

𝑑 𝑠 𝑖𝑗 

𝑑𝑡 
= 

𝑥 𝑅 
𝑖𝑗 
− 𝑠 𝑖𝑗 

τ𝐷 
𝑗 

, (3)

here s ij , 𝑥 
𝑅 
𝑖𝑗 

are activation variables of the synapse at neuron i for a

onnection coming from neuron j , δ( 𝑡 − 𝑡 𝑆𝑃𝐾 
𝑗 

) indicates a spike gener-

tion in the presynaptic neuron at the time 𝑡 𝑆𝑃𝐾 
𝑗 

, and τ𝑅 
𝑗 

, τ𝐷 
𝑗 

are time
onstants that describe the rise and decay of the activation from neuron
 , respectively. The synaptic current 𝐼 𝑆𝑌 𝑁 

𝑖 
is then the sum of all synaptic

nputs to neuron i from the remaining cells: 

 

𝑆𝑌 𝑁 
𝑖 

( 𝑡 ) = 

∑
𝑗 

𝑔 𝑖𝑗 𝑠 𝑖𝑗 ( 𝑡 ) 
(
𝑉 𝑆𝑌 𝑁 
𝑗 

− 𝑉 𝑖 ( 𝑡 ) 
)
, (4)

here g ij is the synaptic conductance of the synapse from neuron j to i,
nd 𝑉 𝑆𝑌 𝑁 

𝑗 
is the equilibrium potential of the presynaptic neuron j . 

Because we only modelled a small and local neural network, we em-
loyed all-to-all connections between the different neurons of each sub-
ype. The PIN-G and PIN-TH modules were then created by reciprocally
oupling the corresponding excitatory and inhibitory neurons, that is,
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Fig. 1. Architecture of the spiking neural network and its dynamics. (A) Network architecture. A PIN-TH module (green) consisted of 10 excitatory neurons 

( Te ) and 10 inhibitory neurons ( Ti ) to generate self-sustained oscillations in the theta frequency band. Analogously, a PIN-G module (blue) with 32 excitatory cells 

( Ge ) and 32 inhibitory cells ( Gi ) produced faster gamma-range activity. Both modules were coupled unidirectionally through all-to-all connections from the Te to 

the Ge cells. The auditory input to the model was firstly decomposed into 32 frequency-specific auditory channels, using a model of the auditory periphery. The 

resulting signals were projected to Ge neurons. They were also convolved with a spectrotemporal filter that mimicked the action of relay neurons and then fed into 

the Te neurons. The application of transcranial current stimulation (yellow) was simulated as a current injection to all excitatory cells in the model. ( B) The network’s 

response to the example sentence ‘Alfalfa is healthy for you’ , preceded by silence. The model of the auditory periphery decomposed the sound into 32 auditory channels 

(top). The resulting neural spikes from the theta module (middle, green) allowed to infer syllable boundaries, and to group the neural output of the gamma module 

(middle, red boxes) according to the individual syllables, enabling the decoding of the syllable identity. The local field potential (LFP, bottom) followed as the sum 

of the synaptic currents delivered to the excitatory neurons. ( C) The coupling from the theta module to the gamma module resulted in phase-amplitude modulation. 

In particular, the phase-amplitude modulation index was high for phases in the theta range, around 5 – 12 Hz, and for amplitudes between 35 - 70 Hz, in the gamma 

range. 
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hose of type Ge and Gi respectively those of type Te and Ti . In addi-
ion, the Ti neurons were all-to-all connected to facilitate sparse syn-
hronous spiking within this population. The cross-frequency coupling
n the model was implemented by connecting the PIN-G module to the
IN-TH module through unidirectional all-to-all connections from the
e to the Ge neurons. 

The values of the model parameters were obtained from the study
hat introduced the model ( Hyafil et al., 2015 ), and are listed in Table 1 .
qs. (1)–(4) were solved numerically using the Euler method with a time
tep of 10 𝜇s. The local field potential (LFP) was obtained by summing
he absolute values of all synaptic currents delivered to the excitatory
ells Ge and Te in the network ( Mazzoni et al., 2008 ). 

.2. Simulation of alternating current stimulation in the model 

Following recent computational models for the effects of tACS on
eural oscillations, we simulated the neurostimulation as a current
njected to all excitatory neurons in the network ( Ali et al., 2013 ;
errmann et al., 2016 ; Negahbani et al., 2018 ) ( Fig. 1 A, yellow). Ex-
erimental evidence suggests indeed that pyramidal neurons, the exci-
atory ones, are significantly more susceptible to external electric fields
han the inhibitory interneurons ( Radman et al., 2009 ). 

To calibrate the intensity of the exogenous stimulation, a constant
timulation current I ext was applied to an isolated Ge pyramidal neu-
on. Specifically, the synaptic current I SYN , the stimulus input current
 

INP , as well as the constant current I DC were all set to 0 with the re-
aining parameter values unchanged. The external current was applied
0 s after the start of a simulation, for a duration of 10 s. Its inten-
ity was varied from 0.01 pA to 1 pA in steps of 0.01 pA. For each
ntensity of the external current, we ran 100 simulations. We thereby
dentified the spiking threshold of an isolated Ge neuron as 0.71 pA.
his intensity of stimulation led, just below the spiking threshold, to an
verage membrane depolarization over 7 mV, comparable to the lev-
ls observed in previous computational models for the effects of tACS
 Negahbani et al., 2018 ). Since non-invasive transcranial electrical stim-
lation in humans is not powerful enough to directly cause spiking in
ortical neurons, in the following simulations we considered subthresh-
ld stimulation at three intensities: 0.1 pA, 0.2 pA and 0.5 pA. These
ed to an average membrane depolarization of 1 mV, 2 mV and 5 mV,
espectively. 
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Table 1 

Model parameters. 

Parameter Description Value 

Neuron model 

C Cell membrane capacitance 1 pF 

V THR Spiking threshold -40 mV 

V RESET Resting potential -87 mV 

V L Equilibrium potential of leak -67 mV 

𝑉 𝑆𝑌𝑁 
𝐸 

Equilibrium potential of excitatory neurons 0 mV 

𝑉 𝑆𝑌𝑁 
𝐼 

Equilibrium potential of inhibitory neurons -80 mV 

PIN-G network 

g LE , g LI Leak conductance in Ge, Gi neurons 0.1 nS 

τ𝑅 
𝐺𝑒 

Synaptic rise constant of Ge neurons 0.2 ms 

τ𝑅 
𝐺𝑖 

Synaptic rise constant of Gi neurons 0.5 ms 

τ𝐷 
𝐺𝑒 

Synaptic decay constant of Ge neurons 2 ms 

τ𝐷 
𝐺𝑖 

Synaptic decay constant of Gi neurons 20 ms 

𝐼 𝐷𝐶 
𝐺𝑒 

Constant current delivered to Ge neurons 3 pA 

𝐼 𝐷𝐶 
𝐺𝑖 

Constant current delivered to Gi neurons 1 pA 

𝜎Ge , 𝜎Gi Variance of the noise term in Ge, Gi neurons 2.028 pA ⋅
√
𝑚𝑠 

PIN-TH network 

g LE Leak conductance in Te neurons 0.0264 nS 

g LI Leak conductance in Ti neurons 0.1 nS 

τ𝑅 
𝑇 𝑒 

Synaptic rise constant of Te neurons 4 ms 

τ𝑅 
𝑇 𝑖 

Synaptic rise constant of Ti neurons 5 ms 

τ𝐷 
𝑇 𝑒 

Synaptic decay constant of Te neurons 24.3150 ms 

τ𝐷 
𝑇 𝑖 

Synaptic decay constant of Ti neurons 30.3575 ms 

𝐼 𝐷𝐶 
𝑇 𝑒 

Constant current delivered to Te neurons 1.25 pA 

𝐼 𝐷𝐶 
𝑇 𝑖 

Constant current delivered to Ti neurons 0.0851 pA 

𝜎Te Variance of the noise term in Te neurons 0.282 pA ⋅
√
𝑚𝑠 

𝜎Ti Variance of the noise term in Ti neurons 2.028 pA ⋅
√
𝑚𝑠 

Connectivity 

g Ge, Gi Gi → G e connectivity 5/ N Gi nS 

g Gi, Ge Ge → G i synaptic conductance strength 10/ N Ge nS 

g Ge, Te Te → G e synaptic conductance strength 1/ N Te nS 

g Te, Ti Ti → T e synaptic conductance strength 2.07/ N Ti nS 

g Ti, Te Te → T i synaptic conductance strength 6.66/ N Te nS 

g Ti, Ti Ti → T i synaptic conductance strength 4.32/ N Ti nS 
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.3. Auditory stimuli and network simulations 

Spoken English sentences from the TIMIT dataset ( Garofolo et al.,
993 ) at a sound-pressure level of 76 dB SPL were used as input to
he neural network model. To investigate speech-in-noise encoding in
he model, we chose a random subset of 100 sentences. We added four-
alker babble noise to each sentence at signal-to-noise ratios (SNRs) that
anged from -25 to 25 dB, in steps of 5 dB. The SNR was thereby deter-
ined from the ratio of the root-mean-square amplitudes of the signal

nd of the background noise. 
For each SNR and each sentence, we simulated the neural network

esponse 100 times. Because the theta module generated intrinsic oscil-
atory activity, we wanted to prevent an accidental alignment between
his theta activity and the onset of the speech. Each sentence was there-
ore preceded by a silent period whose duration varied randomly be-
ween 380 ms and 550 ms. Each simulation was terminated 100 ms
fter the end of the presented sentence. 

To investigate the effect of the neural coupling between the PIN-TH
odule and the PIN-G module, we employed a simpler simulation setup:
e computed the LFP in response to the exemplary sentence ‘ Alfalfa is

ealthy for you. ’. The model responses were simulated 30 times, and
n each simulation the sentence was preceded by a random period of
ilence that ranged from 500 ms to 1,000 ms. 

.4. Input of the acoustic signal to the neural network 

Following the previously introduced model for speech processing
hrough a coupled PIN-TH and PIN-G modules ( Hyafil et al., 2015 ), the
uditory input was processed through a model of the auditory periph-
ry ( Chi et al., 2005 ). This model firstly decomposed the auditory stim-
lus through a cochlear filter bank into 128 channels. The signals in
he different channels were then subjected to nonlinear transformations
hat reflected neural processing in the auditory nerve and the subcor-
ical nuclei. First, mimicking the action of hair cells, the filtered sig-
als were high-pass filtered, nonlinearly compressed and then low-pass
ltered ( Yang et al., 1992 ). Second, a first order derivative across fre-
uency channels was taken, followed by a half-way rectification, which
eflected the lateral inhibition in the cochlear nucleus ( Shamma, 1989 ).
hird, the signal in each channel was integrated over a short temporal
uration of 8 ms, reflecting the decay of temporal precision in the mid-
rain. The obtained signals were interpreted as currents measured in
A, and approximated the tonotopically organized input to the primary
uditory cortex. 

The auditory stimuli processed through the model of the auditory
eriphery were projected to both the PIN-G and the PIN-TH module.
irst, regarding the PIN-G module, each of the 32 Ge neurons received
nput from one auditory channel, in a tonotopic fashion. To this end,
he number of auditory channels was reduced to 32 by selecting every
ourth auditory channel from all 128 available. 

Second, the sound stimuli were used as input to the slower PIN-TH
odule as well. In particular, the Te neurons were stimulated in a way

hat tracked syllable onsets as faithfully as possible. To this end, the Te

eurons received an input current Y ( t ) that was the convolution of the
2 auditory channels described above with a spectrotemporal filter at
uditory channel c and delay 𝜏: 

 ( 𝑡 ) = 

32 ∑
𝑐=1 

6 ∑
i=1 

𝐵 ( 𝑐, τ) 𝑋 

(
𝑐, 𝑡 − τ𝑖 

)
, (5)

n which X is the signal in the auditory channel c at time 𝑡 − τ𝑖 . The 6
emporal delays 𝜏 i were uniformly distributed between -50 ms and 0
s. The convolution of the auditory input with the filter B modelled

he effect of a population of relay neurons with delays of up to 50 ms,
nd with weights that represent the strength of synaptic connections
 Pillow et al., 2008 ). Unlike the tonotopically organized Ge neurons, all
e cells received the same current input Y ( t ). 

The spectrotemporal filter B was computed from 1,000 randomly
hosen sentences from the TIMIT corpus to optimize the predictions of
he syllable onsets ( Hyafil et al., 2015 ). These sentences differed from
he ones that were used for subsequent investigations of speech coding
n the neural network. The audio signals were preceded by a silent part
hose duration varied randomly between 500 ms and 1,000 ms. The

ignals were processed by the model of the auditory periphery, down-
ampled to 100 Hz and concatenated to obtain the signals X . 

The onsets of syllables were obtained from the TIMIT transcription,
nd were used to compute a binary vector . The syllable onsets in this
ector were shifted forward by 20 ms such that they occurred after
he actual onsets. The filter coefficients B were then computed through
parse bilinear logistic regression to predict this syllable vector, with the
yllable onset vector replacing the current input Y ( t ) in Eq. (5) ( Shi et al.,
014 ; Adam and Hyafil, 2020 ). 

.5. Stimulation waveform design 

We explored stimulation waveforms that were based on the envelope
f the speech stimuli ( Fig. 2 ). The envelope of a sentence was computed
y determining the analytic representation of the speech signal using the
ilbert transform, and by calculating its absolute value. The obtained

ignal was further band-pass filtered between 1 - 4 Hz, between 4 - 8
z, or between 1 - 20 Hz, yielding the delta portion of the speech en-
elope, the theta portion of the envelope, or the broadband envelope,
espectively (2 nd order, zero-phase Butterworth bandpass filter). 

We then shifted the obtained envelopes by six different phases, rang-
ng from 0° to 300°, in steps of 60°. In particular, the shift of an enve-
ope e ( t ) by a phase 𝜙 was implemented through the Hilbert transform
[ e ( t )], yielding the analytical representation E ( t ) of the envelope: 

 ( 𝑡 ) = 𝑒 ( 𝑡 ) + 𝑖 ⋅𝐻 [ 𝑒 ( 𝑡 ) ] , (6)
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Fig. 2. Envelope-shaped stimulation waveforms. 

Stimulation waveforms derived from the exemplary 

TIMIT sentence ‘Why yell or worry over silly items?’ . 

( A) Exemplary sentence decomposed into 128 auditory 

channels and its syllable boundaries obtained from the 

TIMIT’s phonetic transcription (dashed red lines). ( B) - 

( D) Waveforms for the neurostimulation were derived 

from the speech envelope, filtered into a broadband 

frequency range ( B ), into the delta range ( C ), or into 

the theta range ( D ). The waveforms in the delta and 

in the theta band were altered so that the maxima and 

minima occurred at the values of 1 and -1, respectively. 

All waveforms were then shifted by six different phases 

(coloured). 
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n which i denotes the imaginary unit. The phase-shifted envelope e 𝜙(t)
hen followed as 

 𝜙( 𝑡 ) = |𝐸 ( 𝑡 ) |Re (e 𝑖 { arg [ 𝐸 ( 𝑡 ) ] +2 𝜋𝜙∕360 ◦} ). (7)

For the two narrowband stimulation signals, the ones that were fil-
ered in the delta and in the theta ranges, we processed the waveforms
urther such that all the maxima had the same value, and that the min-
ma had the opposite value. We recently employed such signals in an ex-
erimental investigation on the effects of current stimulation on speech
omprehension ( Keshavarzi and Reichenbach, 2020 ; Keshavarzi et al.,
020 ). To obtain these waveforms, the amplitude of the analytical en-
elope, | E ( t )|, was set to 1 in Eq. (7) . 

For the broadband stimulation waveform, 1 - 20 Hz, we kept its orig-
nal, non-fixed, amplitude, since this enabled comparison with previous
xperimental work ( Wilsch et al., 2018 ; Kadir et al., 2020 ). In addition,
rocessing these waveforms to achieve maxima and minima at equal
mplitudes would have introduced major distortion to the signals. 

Each phase-shifted envelope e 𝜙(t) was then normalized such that no
alue of the waveform either exceeded 1 or fell below -1. The neurostim-
lation was simulated in the model by multiplying a particular stimula-
ion waveform by the desired stimulation intensity. 

In order to investigate how the temporal alignment of the envelope-
haped stimulation waveform with the acoustic input influenced the
peech processing, we employed stimulation waveforms without phase
hift (i.e. with a phase shift of 0°) but with different temporal delays.
e employed time lags ranging from -250 ms to 250 ms in steps of 50
s step, with positive lags representing a stimulation waveform that
receded the acoustic stimulation. 

.6. Analysis of the phase-amplitude modulation 

The spiking neural network was designed such that the phase of the
heta oscillations influenced the amplitude of the gamma oscillations.
o quantify this coupling, we computed the phase-amplitude modula-
ion index from the LFP ( Tort et al., 2010 ). In particular, we computed
he LFP in response to the exemplary sentence ‘ Alfalfa is healthy for you. ’.
he model responses were computed independently 30 times, and the
entence was each time preceded by a random period of silence that
anged from 500 to 1,000 ms. The simulated LFP was then downsam-
led to 1,000 Hz. It was further subjected to the complex Morlet wavelet
ransform with frequencies between 1 and 80 Hz, in steps of 0.1 Hz. For
ach frequency, the extracted amplitudes were binned into 18 bins ac-
ording to their instantaneous phases. The phase-amplitude modulation
ndex was computed as the Kullback–Leibler divergence ( Kullback and
eibler, 1951 ) of the amplitude distribution across the phase bins from
 uniform distribution. 

.7. Analysis of syllable parsing 

The theta module PIN-TH produced only sparse spiking activity
 Fig. 1 ). Spikes that occurred synchronously across different neurons
merged rhythmically in silence and followed syllable boundaries in re-
ponse to speech. We accordingly employed the model to infer syllable



M. Kegler and T. Reichenbach NeuroImage 224 (2021) 117427 

Fig. 3. Syllable decoding. ( A) The identity of a syllable was decoded from the corresponding chunk of the neural response of the gamma module. To this end, 

the outputs of the 32 Ge neurons in that segment were characterized by their pairwise dissimilarity matrix. One such matrix was obtained for each syllable parsed 

by the PIN-TH module of the network ( Fig. 1 B, red boxes). ( B) The pairwise dissimilarity matrices of the Ge neuronal responses differed for different syllables. To 

decode the identity of an unknown syllable from the neuronal response, its dissimilarity matrix was compared to the averaged dissimilarity matrices for the different 

syllables, obtained from simulations employing clean speech. The unknown syllable was then assigned the identity of the nearest clean-speech dissimilarity matrix. 

o  

s  

s  

T  

m  

l
 

c  

b  

m  

n  

m  

o  

t
 

t  

c  

t  

s  

c  

u  

c  

m  

a  

e  

s  

o
 

t  

o  

a  

t  

t  

A  

o  

t  

p

2

 

p  

p  

n  

t  

c
 

q  

s  

t  

E  

s  

t  

w  

P  

A  

b
 

i  

W  

r  

s  

p  

c
 

i  

w  

d  

a  

t  

t  

m

2

 

o  

1  

e  

t  

s
 

i  

t  

fi  

r  

s  

n  

c  

s
 

m  

w  

d  

r  

p  
nsets by detecting spike bursts. We thereby defined a spike burst as the
piking activity of at least two inhibitory neurons, which had sparser
piking activity than the excitatory neurons, within a 20 ms window.
he precise timing of the syllable onset was assigned according to the
aximal firing rate of the Ti neurons, computed using sliding 20-ms-

ong gaussian window with a standard deviation of 3 ms. 
The performance of the resulting syllable parser was assessed by

omputing the distance, or dissimilarity, between the actual sylla-
le boundaries and those inferred from the activity of the PIN-TH
odule. We thereby measured the dissimilarity through the non-
ormalized Victor-Purpura spike distance with a cost parameter of 50
s ( Victor, 2005 ). We only included those inferred syllable onsets that

ccurred within the duration of the presented sentence, but not those
hat occurred before the start of the sentence or after it had ended. 

For each simulation, the performance of the network was compared
o predictions obtained from a simple constant rhythm. The rate of the
onstant rhythm for this control model was matched to the frequency of
he syllable predictions that the theta network generated during the pre-
entation of a sentence. The onset of the constant rhythm was randomly
hosen from the same range of 380-550 ms, as in the case of model sim-
lations. The performance of the syllable predictions achieved by this
onstant rhythm was quantified through the dissimilarity of the rhyth-
ic predictions from the actual syllable boundaries, in the same way

s for actual syllable predictions. Because the syllable prediction gen-
rated by this constant rhythm were not influenced by the simulated
peech stimulus, they served to estimate the chance-level performance
f predicting the syllable onsets. 

A non-dimensional parsing score was then computed by subtracting
he distance of the inferred to the actual syllable onsets from the anal-
gous measure achieved by the constant rhythm. A parsing score of 0
ccordingly reflected no difference from the prediction performance of
he constant rhythm, whereas a positive score indicated a prediction of
he syllable onsets from the model that was better than in the control.
s an additional control measure, we assessed the syllable parsing when
nly babble noise was presented to the network, with the actual sen-
ence removed from the acoustic stimulus. The obtained parsing scores
rovided an additional empirical estimate of the chance level. 

.8. Syllable decoding 

The excitatory gamma neurons Ge received acoustic input that was
re-processed through a model of the auditory periphery, which decom-
osed the sound into different frequency bands. The activity of the Ge

eurons therefore partly reflected the spectrotemporal information in
he incoming sound. We investigated how well the neural activity en-
oded the identity of a syllable. 

To this end we simulated the neural network response to speech in
uiet, as well as to speech in background noise, at various SNRs. We
egmented the obtained neural data into subsequent chunks, according
o the syllable onsets as inferred from the theta activity described above.
ach chunk was assigned the identity of that syllable in the presented
entence during which the corresponding onset was inferred. Moreover,
he neural activity in each chunk was characterized by a matrix of pair-
ise spike distances, for which we employed the non-normalized Victor-
urpura distance with a cost parameter of 60 ms ( Victor, 2005 ) ( Fig. 3 A).
s a result, each single syllable encoded by the model ( Fig. 1 B, red
oxes) was characterized by a particular dissimilarity matrix. 

Decoding the identity of a syllable then meant to infer the syllable
dentity assigned to the chunk from its pairwise spike distance matrix.

e performed this decoding in two steps. First, we established the neu-
al responses to speech in quiet as the reference neural activity. For each
yllable, this reference neural activity was computed by averaging the
airwise spike distances from all chunks of neural data that were asso-
iated to that particular syllable ( Fig. 3 B). 

Second, we employed a nearest centroid algorithm to decode the
dentity of a syllable associated with a particular chunk of neural data,
hich could correspond to speech in noise. The reference pairwise spike
istances thereby served as centroids. A chunk of neural data was thus
ssigned that syllable identity to whose reference pairwise spike dis-
ance its own pairwise spike distance was closest to. The distance be-
ween two matrices of pairwise spike distance was computed as the root
ean square of their difference. 

.9. Determining the syllable decoding accuracy 

We measured the accuracy of the syllable decoding from the output
f the neural network for speech in various levels of background noise, at
1 different SNRs. To this end we performed a large number of trials, in
ach of which we sought to decode the identity of certain syllables from
he network response to speech in noise, using the network response to
peech in quiet as a reference. 

Neural responses to the speech material were computed as described
n Section 2.3 . In each classification trial, we chose a random subset of
en syllables (classes) amongst which the neural data was to be classi-
ed. For each of the ten syllables we gathered all the neural network’s
esponses to that syllable in a given sentence spoken by a particular
peaker, at a particular SNR (testing data) as well as without background
oise (training data). For each of the ten syllables, we obtained 100
hunks of corresponding neural data, each characterized by its own dis-
imilarity matrix. 

However, due to inaccuracies in the syllable parsing by the PIN-TH
odule, the chunks of neural data associated to a particular syllable
ere sometimes more than 100 and sometimes less. In particular, such
eviations are expected for shorter syllables or faster speech production
ates ( Ghitza, 2011 ; Hyafil et al., 2015 ). To balance the classification
roblem and to prevent biases, in the former case, we selected a random
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ubset of 100 neural data chunks. In the latter case we selected another
ubset of 10 syllable labels to be classified, until 100 associated neural
ata chunks were found for each syllable in the classification trial. 

The neural data associated with each syllable, from presenting the
entences in quiet, was then used to establish the reference neural ac-
ivity. Each chunk of neural data from stimulations employing speech
n noise was classified according to the nearest centroid as described
bove. These predictions were subsequently compared to the actual syl-
able identities and were averaged to determine the classification accu-
acy in the decoding trail. Due to the ten different syllables (i.e. classes)
hat were considered in each trial, the chance level accuracy was 10%. 

We performed 200 of such 10-way syllable decoding trials for each
f the 11 SNRs for which we simulated the neural network response.
he subset of 10 syllables to be classified was chosen at random in each
f the 200 trials, but was then kept for each of the SNRs to enable fair
omparison between the corresponding syllable decoding accuracies. 

.10. Analysis of the effect of SNR on the speech encoding 

The dependency of the syllable decoding accuracy A on the different
NRs could be modelled using a four-parameter sigmoid function: 

 = 

𝐴 𝑚𝑎𝑥 − 𝐴 𝑚𝑖𝑛 

1 + 𝑒 − 𝑘 ( 𝑆 𝑁𝑅 − 𝑆 𝑁 𝑅 0 ) 
+ 𝐴 𝑚𝑖𝑛 , (8)

n which A min is the minimal decoding accuracy, achieved for a very
mall SNR, and A max is the maximal decoding accuracy, resulting from
 very high SNR. SNR 0 is the SNR at which the decoding accuracy is the
verage of the maximal and the minimal value, that is, the SNR at which
he decoding accuracy is halfway between A min and A max . SNR 0 may
herefore be related to the 50% speech reception threshold (SRT) that is
ommonly used to quantify the level of speech-in-noise comprehension
n behavioural experiments. k determines the slope of the curve at SNR 0 .

To obtain the model parameters of Eq. (8) , as well as their confi-
ence intervals, we employed a bootstrapping procedure ( Davison and
inkley, 1997 ). The 200 trials of syllable decoding, performed for the
leven different SNRs, resulted in 2,200 datapoints. We resampled these
0,000 times with replacement, and each time computed the parame-
ers of the sigmoidal fit through non-linear least squares (Levenberg-
arquardt algorithm ( Marquardt, 1963 )). We thereby obtained empir-

cal distributions for each model parameter. The mean value of each
arameter followed as the mean of the corresponding distribution, and
he associated (100-n)% confidence interval was computed as the range
etween the distribution’s ( 𝑛 2 ) 

th and the ( 100 − 

𝑛 

2 ) 
th percentile. The op-

imal curve fitted to the data and its confidence bands were computed
rom these values. 

We modelled the effect of background noise on the syllable parsing
core through a sigmoidal function as well. The parameters of the sig-
oidal fit and their confidence intervals were determined analogously

o dependence of the syllable decoding accuracy on the SNR set out
bove. 

.10. Quantifying the contributions of spectral cues to the speech encoding 

n the model 

To identify the contributions of spectral cues to the syllable pars-
ng and encoding in the model, we repeated the simulations of speech
n background noise, but with randomly shuffled auditory channels.
pecifically, for each simulation of the model, the 32 auditory channels
hat contained the auditory input were randomly re-ordered. The time
ourse of each channel remained unchanged, so that the net acoustic
nput to the model remained the same as for the original stimulus. 

The shuffled acoustic inputs were then processed in the model as
pecified in Section 2.4 . In particular, the randomly shuffled auditory
hannels were projected to the Ge neurons and to the population of
elay neurons, which provided input to the population of Te neurons.
he model simulations employed the same sentences and SNRs as in the
revious experiment (see Section 2.3 for details). Syllable parsing and
ecoding were analysed as described in Sections 2.7–2.10 . In particular,
he model simulations of the original, unshuffled, clean sentences were
sed as a reference to evaluate the syllable decoding accuracy of the
huffled input. 

.11. Modelling the effects of external electrical stimulation on the speech 

ncoding 

To investigate the effects of external electrical stimulation on the
ncoding of speech in the model, we ran the same model simulations
s specified in Section 2.3 , but this time simulating the application of
xternal alternating current as well. The stimulation waveforms used
nd their alignment with respect to the acoustic input were specified in
ection 2.5 . 

The analysis of the syllable parsing and decoding was the same as de-
cribed in Section 2.7–2.10 . Importantly, for syllable decoding, the stim-
lation waveform was applied also when speech without background
oise was simulated in the model. This meant that the centroids of the
yllable classifier were computed from speech in quiet, but with added
urrent stimulation. We chose this approach because the neural encod-
ng of speech, including speech in quiet, was likely affected by the ap-
lied current. Our goal was, however, to assess the impact of current
timulation on the network’s encoding of speech in noise, and not on
peech in quiet. We therefore employed the neural responses to speech
n quiet during current stimulation as a reference to assess how the ap-
lied stimulation influences the consistency of the neural code across
NRs for a given type of stimulation. 

. Results 

.1. Intrinsic network activity 

The PIN-G and the PIN-TH modules in the network generated self-
ustained rhythmic activity in the gamma (25-40 Hz) and in the theta
4-8 Hz) frequency range, respectively ( Fig. 1 B). Through the unidirec-
ional coupling from the Te to the Ge neurons ( Fig. 1 A, red), the theta
hythm modulated the faster gamma activity. In particular, each burst
f spikes generated in the PIN-TH module reset the phase of the faster
amma oscillations ( Fig. 1 B). We quantified this coupling through com-
uting the phase-amplitude modulation index between the LFP of the
IN-TH module and the LFP of the PIN-G module, when processing an
xemplary sentence preceded by a period of silence and without addi-
ional current stimulation ( Fig. 1 C). We found that the neural activity
etween 5 - 12 Hz modulated the faster activity in the gamma band,
bove 25 Hz. 

.2. The neural network’s encoding of speech in noise 

When the network was presented with speech, the theta rhythm
ligned to the syllable onsets ( Fig. 1 B). We quantified this alignment by
omputing a syllable parsing score, and used it to systematically quan-
ify how well the network parsed syllables when speech was presented in
ifferent levels of babble noise. To estimate the empirical chance level,
e presented the neural network with babble noise alone, and com-
uted the syllable parsing score that would have been associated with
he missing speech signal. 

For the lowest SNR that we considered, -25 dB, the syllable pars-
ng score attained a very low value of -0.03 ± 0.05 (mean and 95% CI,
ig. 4 A, blue). This was comparable to the empirically estimated chance
evel of 0.01 ± 0.05 (mean and 95% CI, Fig. 4 A, red). The syllable pars-
ng at this low SNR was therefore insignificant. However, SNRs of -10
B or higher led to syllable parsing score that exceeded the chance level.
or the highest SNR of 25 dB that we simulated, the score reached 0.88
 0.05 (mean and 95% CI). 
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Fig. 4. Speech-in-noise encoding in the model. (A) The syllable parsing by the theta module (blue) was at chance level (grey) for high levels of background 

noise (low SNR), but exceeded chance level for SNRs above -15 dB. It saturated at a value of around 0.9 for high SNRs, following a sigmoidal relationship with an 

inflection point at the SNR of -5.7 dB (green). Syllable parsing did not exceed the chance level when the speech signal was absent from the acoustic input (red). ( B) 

The accuracy of the syllable decoding (blue) from the neural response of the gamma module exhibited a sigmoidal dependence on the level of the background noise 

as well. The decoding accuracy was above the chance level (grey) when the SNR was -10 dB or higher. The inflection point of the sigmoidal fit occurred at an SNR of 

-1.1 dB (green). No significant syllable decoding could be achieved when the speech signal was removed from the background noise (red). ( C) The syllable decoding 

accuracy increases monotonously with the syllable parsing score, with increasing SNR. The correlation between the two measures is statistically highly significant 

( p = 4 ⋅ 10 −7 ). ( D ) A control computation in which syllable parsing and syllable decoding are obtained from sound mixtures in which the target speech signal has 

been removed shows performance that is only at the chance level (grey). 
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To interpret the magnitudes of the parsing scores, we computed
he maximal parsing score, which followed from the true syllable on-
ets. We obtained a maximal parsing score of 9.21 ± 0.02 (mean and
5% CI). Likewise, the parsing score of 0 reflected an insignificant pars-
ng that was equal to that of the null model ( Fig. 4 A, grey dashed). The
aximal parsing scores obtained from the spiking neural network were

herefore only about 10% of the maximal possible value, that is, the one
hat would result from perfect alignment of the predicted and actual
yllable onsets. 

The dependence of the parsing score on the SNR could be fitted well
y a sigmoidal curve ( Fig. 4 A, blue). The inflection point of the sigmoid,
hat is, the SNR at which the syllable parsing score was midway between
he minimal and the maximal value, occurred at -5.7 dB ± 1.0 dB (mean
nd 95% CI). 

The excitatory neurons of the PIN-G module, the Ge neurons, were
nfluenced by the PIN-TH module. At the same time, the Ge neurons
ere stimulated by the sound as well, in a tonotopic fashion ( Fig. 1 A).
hile the PIN-TH module could parse syllables, the neuronal activity of

he faster PIN-G module could therefore encode the identity of the corre-
ponding syllable. We determined the accuracy of the syllable encoding
y assessing how well syllables could be decoded from the spiking ac-
ivity of the Ge neurons. 

Because we decoded syllable identities out of ten possible choices,
he chance level for the decoding accuracy was 10%. We verified this
hance level by assessing the syllable decoding when only background
oise was presented to the neural network. This yielded a decoding ac-
uracy of 11.6% ± 0.3% (mean and 95% CI), approximately in line with
he chance level ( Fig. 4 B, red). 

We found that the accuracy of the decoding of syllables in back-
round noise, as a function of the SNR, followed a sigmoidal curve
 Fig. 4 B, blue). For the lowest considered SNR of -25 dB, the decod-
ng was poor, with an accuracy of 11.6% ± 0.6% (mean and 95% CI).
his low accuracy exceeded the chance level of 10% only slightly. 

The largest SNR that we simulated, 25 dB, led, in contrast, to a high
ecoding accuracy of 61.0% ± 1.1% (mean and 95% CI). Indeed, the
ecoding accuracy exceeded the chance level already for the compara-
ively low SNR of -10 dB, as well as for higher SNRs. Fitting a sigmoid
o the dependence of the decoding accuracy on SNR showed that the
nflection point of the curve was at a SNR of -1.1 ± 0.2 dB (mean and
5% CI). 

We also investigated the relationship between syllable parsing scores
nd syllable decoding accuracies ( Fig. 4 C). We found a strong positive
orrelation between the two measures (Pearson’s 𝑟 = 0 . 97 , 𝑝 < 10 −6 ).
ow parsing scores were accordingly associated to low accuracies of
yllable decoding and vice versa . The slope of a linear fit was 0.55. 

However, the relation between the two scores was not exactly lin-
ar. Instead, intermediate SNRs led to relatively higher syllable parsing
cores than the syllable decoding accuracies. This behaviour reflected
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Fig. 5. Encoding of speech with shuffled auditory channels. The figure depicts the syllable parsing scores (A ) and the decoding accuracies ( B ) obtained for the 

original acoustic input (blue) or when the auditory channels were randomly shuffled (red). The dashed grey lines represent the chance level for each score, and error 

bars depict 95% confidence intervals. (A) The syllable parsing scores remained at approximately the same level when auditory channels were shuffled, especially for 

lower SNRs (between -25 and -5 dB). A discrepancy between the shuffled and the original inputs occurred for SNRs above -5 dB. (B) In contrast to the syllable parsing, 

syllable decoding accuracy decreased substantially when the auditory channels were shuffled. In particular, the syllable decoding of the shuffled input remained at 

or only slightly above chance level for all SNRs. The syllable decoding of the original speech input, however, was significantly higher than the chancel level for SNRs 

above -10 dB. 
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ur earlier finding that the inflection point of the sigmoidal dependence
f the syllable parsing scores on the SNR occurs at a lower SNR, -5.7 dB,
han that of the decoding accuracy, -1.1 dB. 

As a control, we also assessed the correlation between the syllable
arsing score and the decoding accuracy when both were obtained from
he background babble noise ( Fig. 4 D). As expected, the resulting scores
ere low and not significantly correlated (Pearson’s 𝑟 = 0 . 1 , 𝑝 = 0 . 8 ). 

.3. Quantifying the contributions of spectral cues to the speech encoding 

n the model 

To investigate the contributions of frequency-specific cues to the
odel’s speech encoding, we shuffled the auditory channels of the

coustic inputs in model simulations. We compared the obtained syl-
able parsing scores and decoding accuracies with the case when the
etwork was encoding the original acoustic input ( Fig. 5 ). 

Shuffling the auditory channels influenced the syllable parsing and
ecoding differently ( Fig. 5 ). Syllable parsing was not affected strongly
y the shuffling, and its dependence on the SNR of the spectrally-
huffled input was comparable to that of the original acoustic signal
 Fig. 5 A). In particular, for low SNRs, below -5 dB, the results were al-
ost identical. For SNRs above -5 dB, shuffling of the auditory channels

ed to a slight decrease in performance. The largest difference in the
arsing scores between the shuffled and the original acoustic input, a
ifference of 0.092 a.u., was observed for a SNR of approximately 5 dB .
or a SNR of 25 dB, the parsing scores from the two conditions remained
ifferent, but the discrepancy between them was smaller (0.063 a.u.). 

For syllable decoding, however, the shuffling of auditory channels
ed to a major deterioration of the classification accuracy ( Fig. 5 B). Sim-
larly to the syllable parsing scores, for the very low SNRs below -10 dB,
he decoding accuracy for both the shuffled and the original input was
imilar and did not exceed chance level. For SNRs above -10 dB, the
esults obtained from the two types of input started to diverge. Notably,
he syllable decoding accuracy for the shuffled input ( Fig. 5 B, red) did
ot exceed the chance level below approximately 0 dB SNR. Even at a
NR of 25 dB it remained substantially below that of the original, non-
huffled, input, reaching only 18.0% ± 0.5% accuracy (mean and 95%
I). 

.4. The effects of the external current stimulation on speech processing in 

he model 

We assessed the effects of the external current stimulation with the
peech envelope on the network’s encoding of speech stimuli. We inves-
igated three main types of current waveforms: one type that was based
n the broad-band speech envelope, a second type that was based on the
elta-band portion, and a third type that was based on the theta-band
ortion of the speech envelope ( Fig. 2 ). For each of these three types,
e then considered six different phase shifts. Because the waveforms of

ach type encompassed more than a single frequency, these phase shifts
iffered from temporal delays. 

In addition, we considered eleven time delays that ranged from -250
s to 250 ms with 50 ms step. Positive time lags thereby meant that

he stimulation onset preceded the sentence that was presented to the
odel. The phase of the time-shifted waveforms was not manipulated,

uch that their phase shift was 0°. 
Each waveform was applied at three different intensities of 0.1 pA,

.2 pA and 0.5 pA. 

.4.1. The effects of the external current stimulation on syllable parsing 

To quantify the influence of the applied stimulation waveforms on
he syllable parsing, governed by the slower theta rhythm in the model,
e assessed the obtained parsing scores at the SNR of 0 dB. For this
NR, model simulations without additional current stimulation yielded
 parsing score of 0.65 ± 0.05 (mean and 95% CI) ( Fig. 4 B). 

For each applied stimulation waveform, we obtained the parsing
core at 0 dB SNR and compared them with the case when no stim-
lation was applied to the model. The Wilcoxon signed rank test
 Wilcoxon, 1945 ) was used to assess whether the difference between
he two was significant. We then applied the Benjamini-Yekutieli cor-
ection for false discoveries from multiple comparisons to the obtained
 -values ( Benjamini and Yekutieli, 2001 ). The significance threshold for
ypothesis testing was set to 𝑝 = 0 . 05 . 

For the stimulation waveforms shifted in phase, the theta-band
timulation provided the largest difference to the case without
timulation, consistently across all considered stimulation intensities
 Fig. 6 A, C, E). The theta-band stimulation notably outperformed the
ther stimulation waveforms for the phase shifts of 180° and 240°,
nd provided the largest improvement of the parsing scores. Delta-
and stimulation yielded slightly larger improvement than the broad-
and waveform for the phase shifts of 180° and 240°. Overall, the ef-
ects of the applied stimulation provided phase-dependent modulation,
hich remained consistent across stimulation intensities. For all types
f stimulation waveforms phase shifts ranging from 0° to 120° typically
ed to the decrease in the parsing scores. In turn, phase-shifts rang-
ng from 180° to 300° facilitated the syllable parsing. While the phase-
ependent modulation was observed for all the waveforms, the strength
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Fig. 6. The effects of the external current stimulation on the syllable parsing. The syllable parsing scores during current stimulation were computed for speech 

in background noise, at a SNR of 0 dB. We computed the syllable parsing scores for broad-band stimulation (blue), delta-band stimulation (red), and theta-band 

stimulation (green), and compared the results to the case of no stimulation (black dashed line). The stimulation waveforms were either shifted in phase ( A, C, E ) or in 

time ( B, D, F ) with respect to the acoustic input. Positive time lags represent stimulation onset preceding the neural processing. Each row of panels shows results for 

a different stimulation intensity, and the error bars and shaded areas represent 95% confidence intervals. Parsing scores that differ significantly from those obtained 

without stimulation are indicated by coloured disks ( p < 0.05, FDR correction for multiple comparisons). Stimulation at phase shifts of about 240° as well as at time 

shifts of about 50 ms typically enhance the syllable parsing, whereas phase shifts of 60° as well as time shifts of about -50 ms lead to a worsening of the syllable 

parsing. 
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f the modulation varied depending on the frequency of the stimulation
aveform. 

For the stimulation waveforms shifted in time, the effect on the syl-
able parsing depended on the frequency of the stimulation waveform
 Fig. 6 B, D, F). For theta-band stimulation, the largest improvement was
bserved for a delay of 50 ms, that is, when the onset of the stimulation
receded the onset of the acoustic input by 50 ms. Additional significant
mprovements in parsing scores were observed for time lags of -100 ms,
00 ms and 250 ms. Interestingly, the difference between the two pairs
f beneficial lags was 150 ms, corresponding to a frequency of approxi-
ately 6.67 Hz. In turn, the negative effects of the theta-band stimula-

ion on the parsing scores were observed for -200, -50, 0 and 150 ms.
s for the beneficial time lags, the difference between two successive
elays were therefore 150 ms as well. 

For the delta-band stimulation, the time lag that led to the largest im-
rovement of the parsing score was between 50 and 100 ms, depending
n the stimulation intensity. Similarly to the stimulation with different
hase shifts, the effects of the delta-band stimulation at the best time lag
ere smaller than for the theta-band stimulation, but were larger than

he broadband stimulation, across all stimulation intensities. Delta-band
timulation that proceded the acoustic input, that is, at negative time
ags, led to a decrease of the parsing scores. The size of this decrease
epended on the stimulation intensity and was comparable to that of
he theta-band stimulation. 

Stimulation with the broadband waveforms shifted in time influ-
nced syllable parsing the least. Notably, only the time lag of 100 ms
ed to a consistent improvement of parsing scores across all three stim-
lation intensities. For the two higher stimulation intensities, the time
ags of 50 ms (at 0.2 pA, 0.5 pA) and 250 ms (at 0.5 pA) also facilitated
yllable parsing, but not as strongly as at the delay of 100 ms. 
.4.2. The effects of the external current stimulation on syllable decoding 

To assess the neural network’s speech encoding during stimulation,
e measured the syllable decoding accuracies at the SNR of -1.1 dB. This
NR yielded, without current stimulation, a decoding accuracy of 36.4%
 0.7% (mean and 95% CI) that was halfway between the minimal and

he maximal accuracy ( Fig. 4 B). 
For each type of stimulation waveform, we then established whether

he obtained syllable decoding accuracy was significantly different
rom the one that resulted in the absence of current stimulation. To this
nd, we obtained the empirical distribution of the syllable decoding
ccuracies without current stimulation at -1.1 dB SNR through a
ootstrapping procedure as described in Section 2.10 . This empirical
istribution represented the lack of the effects of the applied stimu-
ation. For each stimulation waveform, it was then compared to the
yllable decoding accuracy that resulted when current stimulation was
pplied, to establish an empirical p -value (two tailed) for the obtained
ecoding accuracy. We then applied the Benjamini-Yekutieli correc-
ion for false discoveries from multiple comparisons to the obtained
 -values. The significance threshold for hypothesis testing was set to
 = 0 . 05 . 

The lowest stimulation intensity that we considered was 0.1 pA, lead-
ng to a depolarization of the membrane potential of a stimulated iso-
ated neuron by 1 mV. Stimulation at such a low intensity led only to
ignificant change in the decoding accuracy for the delta-band stimula-
ion ( Fig. 7 A, B). In particular, delta-band stimulation at certain phase
hifts and time shifts worsened the syllable decoding: a phase shift of
80° resulted in a lower decoding accuracy of 35.0% ± 0.7%, a phase
hift of 240° reduced the decoding accuracy to 35.2% ± 0.7%, a time lag
f -150 ms yielded a decoding accuracy of 34.9% ± 0.6%, and a time
hift of 250 ms lowered the decoding accuracy to 35.2% ± 0.7%. 
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Fig. 7. The effects of the external current stimulation on the syllable encoding. Syllable decoding accuracies during current stimulation were computed for 

speech in background noise, at a SNR of -1.1 dB. We computed the syllable decoding accuracies for broad-band stimulation (blue), delta-band stimulation (red), and 

theta-band stimulation (green), and compared the results to the case when no stimulation was applied to the model (black dashed line). The stimulation waveforms 

were either shifted in phase ( A, C, E ) or in time ( B, D, F ). Positive time lags represent stimulation waveform preceding the acoustic signal. The error bars and 

shaded areas represent the 95% confidence intervals. Decoding accuracies that differed significantly from the case when no stimulation was applied to the model are 

indicated by coloured disks ( p < 0.05, FDR correction for multiple comparisons). 
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We then investigated an intermediate stimulation intensity of 0.2 pA,
eading to a 2-mV depolarization of an isolated neuron. This led to sig-
ificant differences in the syllable decoding accuracy, as compared to no
timulation, for theta- and delta-band stimulation, but not for the broad-
and current waveforms ( Fig. 7 C, D). In particular, theta-band stimula-
ion yielded significant improvement for phase shifts of 0°, resulting in
 syllable decoding accuracy of 37.8% ± 0.7%, and 60°, increasing the
ccuracy to 37.8% ± 0.8%, as well as at a 0 ms time lag, yielding a decod-
ng accuracy of 37.8% ± 0.7%. In turn, delta-band stimulation yielded
ignificant improvement only for 300° phase shift, increasing the de-
oding accuracy to 37.5% ± 0.7%. It also led to a significant decrease in
ecoding accuracy, namely for a 180° phase shift that yielded an accu-
acy of 35.3% ± 0.7% as well as for a 150 ms time lag that lowered the
ccuracy to 34.9% ± 0.7%. 

At the highest considered stimulation intensity of 0.5 pA, the narrow-
and stimulation waveforms had, at most phase shifts, a significant im-
act on the network’s speech coding, while the broadband stimulation
ielded significant effects only for a couple of phase and time shifts
 Fig. 7 E, F). The largest improvement of about 5% in the syllable decod-
ng accuracy emerged for the theta-band stimulation aligned with the
entence onset, that is, without a shift in phase or time. This improve-
ent was slightly larger than that observed for the delta-band stimula-

ion without phase- or time shift, and was substantially larger than that
esulting from the broad-band stimulation. 

. Discussion 

We investigated the influence of alternating current stimulation with
he speech envelope on the neural processing of speech in background
oise, using a computational model of a spiking neural network. We
haracterized the network’s speech encoding through two measures, the
yllable parsing score and the accuracy with which the syllable identity
ould be decoded from the neural activity. We found that both measures
ncreased with increasing SNR, following a sigmoidal curve. This be-
aviour resembled psychometric curves of speech comprehension mea-
ured behaviourally ( Plomp and Mimpen, 1979 ; Nilsson et al., 1994 ;
pyridakou et al., 2020 ). An important characteristic of each sigmoidal
urve was the inflection point, that is, the SNR at which the correspond-
ng measure —the syllable parsing score or the syllable decoding accu-
acy —was midway between the lowest and the highest value. This in-
ection point occurred, for the syllable decoding accuracy, at an SNR of

1.1 dB ( Fig. 4 B). At this SNR, the human comprehension of speech in
abble noise is about 50%, suggesting that the neural network’s speech
ncoding may capture certain aspects of the neural mechanisms through
hich humans understand speech in noise. 

The inflection point of the sigmoidal curve occurred at a lower SNR
f -5.7 dB for the syllable parsing scores, suggesting that syllable parsing
as somewhat more robust in the presence of background noise than syl-

able decoding. Our further investigation employing spectrally-shuffled
ersions of the acoustic input showed that the syllable parsing depended
ainly on the slow amplitude fluctuations in the acoustic input rather

han on frequency-specific features ( Fig. 5 A). On the contrary, the accu-
acy in the syllable decoding task deteriorated almost completely when
he frequency channels of the acoustic input were randomly shuffled
 Fig. 5 B). Syllable decoding therefore relied mostly on the frequency-
pecific information in the acoustic input. These differences between
he syllable parsing and the syllable decoding highlight the two distinct
echanisms by which both tasks are accomplished in the model, either

hrough the neural output of the PIN-TH module, or through that of the
IN-G network ( Fig. 1 ). 

We investigated the effects of the stimulation waveforms that were
erived from the speech envelope on the speech encoding in the model.
he stimulation waveforms were either narrow- or broadband, and were
imulated with different stimulation intensities. In order to quantify the
mpact of the alignment of the stimulation waveform and the acoustic
nput, we shifted the stimulation waveform in either phase or time. 
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With increasing stimulation intensity, the effects on syllable parsing
nd syllable decoding increased as well ( Figs. 6 , 7 ). For syllable parsing,
he phase-shifts of the stimulation waveforms led to a modulation pat-
ern that was periodic in the phase. Phase shifts between 0-120° led to a
ecrease of parsing scores, and phase shifts of 180-300° improved them
 Fig. 6 A, C, E). Importantly, this behaviour was consistent for the delta-
and, theta-band and broadband stimulation, although the size of the
ffect depended on the frequency band. Specifically, we observed the
argest phase-dependent modulation of syllable parsing for the theta-
and stimulation, a moderate one for the delta-band waveforms, and
he smallest one for the broadband type stimulation. 

These findings parallel recent experimental results on a phase-
ependent modulation of speech-in-noise comprehension through tran-
cranial current stimulation with the speech envelope ( Riecke et al.,
018 ; Zoefel et al., 2018 ; Kadir et al., 2020 ; Keshavarzi et al., 2020 ).
hese experiments reported significant effects of tACS on speech com-
rehension only for theta-band stimulation, which may correspond to
ur finding of the theta-band stimulation having the largest effect on
he speech encoding in the model ( Keshavarzi et al., 2020 ). 

In contrast, time shifts of the stimulation waveform led to modu-
ations of the syllable parsing that depended on the frequency of the
timulation waveform ( Fig. 6 B, D, F). All of the considered stimulation
aveforms yielded improved syllable parsing scores when the stimu-

ation preceded the acoustic input by 50 ms to 100 ms. This time lag
atches the neural delay of the early cortical processing of speech

 Kubanek et al., 2013 ; Brodbeck and Simon, 2020 ). 
To interpret our results regarding the temporal delays, it is impor-

ant to note that our model did not include a temporal delay between
he acoustic input and the neuronal modules, with the exception of the
elay neurons that fed into the theta network and that had delays be-
ween 0 and 50 ms. However, the neural responses in the human audi-
ory cortex exhibit delays between approximately 20 ms and hundreds of
s ( Pickles, 2013 ). In particular, the primary auditory cortex responds

argely at delays between 50 to 100 ms. If we assume that our model of
 spiking neural network corresponds to a part of the primary auditory
ortex, we therefore need to account for an additional delay of 50 ms to
00 ms in the neural response with respect to the acoustic signal. The
aximal enhancement of the syllable parsing score would then occur

or neurostimulation waveforms that had no time shift with respect to
he acoustic signal. This interpretation of our model prediction agrees
ith recent behavioural experiments that found that theta-band stimu-

ation with no temporal delay led to the largest improvement in speech
omprehension ( Keshavarzi and Reichenbach, 2020 ; Keshavarzi et al.,
020 ). 

The magnitude of the enhancement of syllable parsing at the time
hifts of 50 ms to 100 ms depended on the type of stimulation wave-
orm. Consistent with the results obtained for the phase-shifted wave-
orms, the largest improvement was obtained for theta-band stimula-
ion, followed by its delta-band counterpart, while broadband stimula-
ion yielded the smallest improvements. 

Notably, only theta-band stimulation waveform led to substantial
mprovement of parsing scores for the two further temporal delays, at
pproximately -100 ms and at approximately 250 ms. Both time lags
iffer from the time lags that led to the highest syllable parsing score,
0 ms to 100 ms, by 150 ms to 200 ms. This apparent periodicity in the
odulation of the syllable parsing score at a period of 150 ms to 200
s may reflect the periodicity in the theta-band waveform. The period

f 150 ms to 200 ms corresponds indeed to a frequency between 5 Hz
nd 7 Hz, so entirely in the theta frequency range. 

Our observation of theta-band stimulation yielding the largest en-
ancement of syllable parsing presumably reflects the fact that the theta-
and stimulation had a frequency range similar to the intrinsic activity
f the PIN-TH network, about 5-10 Hz. The theta-band stimulation could
herefore efficiently entrain the oscillations in the theta module on the
er-cycle basis ( Herrmann et al., 2016 ). Delta- and broadband stimu-
ation waveforms could entrain theta oscillations as well, and conse-
uently influence syllable parsing, but to a smaller extent, especially re-
arding an enhancement. For the delta-band stimulation, this was likely
ue to the mismatch between the frequency bands: the delta-band fre-
uencies, at 1 - 4 Hz, were subharmonics of those that occurred in the
ntrinsic activity of the PIN-TH module. As a result, one cycle of the
pplied stimulation affected, on average, two cycles of the theta-band
scillations tracking syllable onsets, leading to a weaker entrainment
nd associated improvement in syllable parsing. Because the broadband
timulation included both the theta and the delta band, it presumably
ed to interferences between the two and therefore to a further weak-
ning of the effect. Moreover, the delta- and theta-band waveforms but
ot the broadband waveforms had been processed so that their max-
ma and minima occurred at the same values, which might have further
ncreased the efficacy of the delta- and theta stimulation. 

Syllable decoding was overall affected by the current stimulation to
 lesser degree than syllable parsing ( Fig. 7 ). In particular, the lower
timulation intensities of 0.1 pA and 0.2 pA yielded barely a significant
odulation of the syllable decoding. At the highest stimulation inten-

ity of 0.5 pA, the effect depended on the phase and time shifts. The
argest improvement in the syllable decoding accuracy was achieved
hen the applied waveform was aligned to the speech signal, with-
ut an additional phase shift, whereas the opposite phase shift of 180°
ielded the worst syllable decoding accuracy. This parallels recent ex-
erimental findings that have found the phase-dependent modulation of
peech-in-noise comprehension due to current stimulation with the sig-
ificant improvement for a phase shift of 0° and the worst performance
btained for a phase shift of 180° ( Keshavarzi and Reichenbach, 2020 ;
eshavarzi et al., 2020 ). 

Somewhat unexpectedly, at the highest stimulation intensity, theta-
and stimulation consistently improved the decoding accuracy for all
he phase and time lags that we considered. This result presumably re-
ected the matching of the theta stimulation to the intrinsic rhythm of
he theta module that parsed the syllables. Because the syllable decoder
as established using the model’s response to clean sentences under a

ertain type of stimulation, the decoding scheme emphasized the con-
istency of the neural code across SNRs under certain stimulation con-
ition. Since the effects of the theta-band stimulation on the parsing of
yllables in the model were overall the strongest, the encoding of speech
ould therefore benefit from theta-band stimulation, for different time
nd phase shifts. However, no such effect was observed for the delta-
nd broadband stimulation waveforms, whose influence on the syllable
arsing was notably weaker. 

The syllable decoding under the strongest theta-band stimulation
epended nonetheless on both phase and time shifts. The largest en-
ancement of the decoding accuracy was obtained in the absence of
ither phase or time shifts, that is, at shifts of 0° and 0 ms. Regarding
hase shifts, the worst performance was obtained when the waveform
as shifted by 120 ° - 240°. Regarding time shifts, the performance de-

reased symmetrically for both negative and positive shifts up to ± 100
s, and then increased again towards peaks between ± 150 ms to ± 200
s. The emergence of these peaks that differed from the largest peak at
 ms by 150 ms to 200 ms was reminiscent of the dependence of the
yllable parsing score on the time shifts, for the theta-band stimulation
 Fig. 6 F). As in that case, the dependence of the syllable encoding on the
ime lags likely reflected periodicity in the intrinsic rate of the syllable-
arsing PIN-TH module, between 5-10 Hz, yielding a period between
00 ms to 200 ms. 

For the strongest stimulation intensity of 0.5 pA, and without phase
r time lag, the delta-band stimulation yielded an enhancement of the
yllable decoding accuracy that was only slightly below that of the theta
timulation. However, as opposed to the stimulation with the theta-band
ortion of the speech envelope, the delta-band stimulation could also
ecrease the accuracy, such as at phase shifts of 120° and of 180° as well
s at a time lag of -200 ms. The significant decrease in syllable decoding
t these phase and time lags reflects a substantial deterioration of the
onsistency of the neural code across SNRs during those stimulations. 
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Broadband stimulation at the intensity of 0.5 pA yielded substan-
ially smaller effects on syllable decoding accuracy than both the delta-
nd the theta-band stimulation. We found significant improvements of
he accuracy only for the phase shifts of 0° and of 300°, as well as for
ime shifts of 0 ms and 50 ms. Similar to the delta-band stimulation, the
nly significant negative effect was observed for a time lag of -200 ms,
lthough the effect was smaller. 

Surprisingly, the best and worst stimulation phases and time lags for
he syllable parsing differed from those of the syllable decoding accu-
acies. The best syllable parsing was obtained for a phase shift of 240°,
ielding a phase advance of 120° with respect to the unshifted wave-
orm. We obtained similarly the worst syllable parsing at a phase shift
f 60°, also at a phase advance of 120° as compared to the phase at which
he worst syllable decoding accuracy occurred. Regarding the time de-
ays, the largest improvement in the parsing scores were obtained for
ither 50 ms (theta-band stimulation) or for 100 ms (delta- and broad-
and stimulation). The best syllable decoding resulted in the absence of
 time delay. 

These systematic phase and time differences between the influence
f the current stimulation on the syllable parsing and on the syllable de-
oding were unexpected. They reiterate that the parsing of syllables and
he encoding of the syllable content in the network activity were gov-
rned by distinct mechanisms, implemented by the two modules con-
tituting the network ( Fig. 1 ). First, the activity in each module was
ikely influenced by the external current in a different way. In partic-
lar, the frequency of the theta rhythm was similar to that of the ex-
genous, envelope-shaped, stimulation waveform, and could therefore
e entrained by the latter ( Herrmann et al., 2016 ). The gamma activity,
n contrast, had higher intrinsic frequency and therefore the substan-
ially slower external alternating current stimulation waveform could
nly temporally modulate, rather than directly entrain, the activity of
eurons making up the PIN-G network ( Fröhlich and McCormick, 2010 ).

Second, the influence of the current stimulation on the two tasks of
yllable parsing and syllable decoding differed as well. In particular, the
peech envelope reflects mainly the voiced parts of speech, which gener-
lly have a larger amplitude than the voiceless parts ( Grant et al., 1985 ;
hannon et al., 1995 ; Biesmans et al., 2017 ). Syllables begin, however,
ften with a voiceless part. Even in syllables beginning with a voiced
art, their onsets precede the majority of their energetic content. The
peech envelope, shifted to have a phase or time advance, therefore
ligns better with the syllable onsets than the unshifted envelope. A
hase or time advance of the current stimulation could accordingly lead
o better syllable parsing in the model. In contrast, the syllable decod-
ng from the model output relied mostly on the voiced parts of speech,
hich yield larger activations of auditory channels than the voiceless
arts ( Chi et al., 2005 ). The peaks of the speech envelope aligned with
he acoustic input therefore coincided with the stimulus-driven current
elivered to the PIN-G module, what in turn facilitated the syllable en-
oding. 

Our model therefore suggests that the stimulation waveforms that
re optimal for syllable parsing are not optimal for syllable decoding,
nd vice versa . However, syllable decoding partially depends on syllable
arsing. The different influence of the current stimulation on both pro-
esses accordingly implies that the neurostimulation’s effect on speech
ncoding in the model is partly inhibited by these interferences. 

An important limitation of our model is that it operates only in a
eed-forward fashion. The acoustic stimuli and the current stimulation
erve as input to the model. The PIN-TH module parses syllables and
eeds forward to the PIN-G module, the neural activity of which al-
ows to decode the syllable identity. The brain, in contrast, employs
any feedback loops. In particular, attention to one of several acous-

ic streams as well as linguistic predictions likely act as top-down ef-
ects on speech coding ( Zion Golumbic et al., 2013 ; O’Sullivan et al.,
015 ; Etard and Reichenbach, 2019 ; Weissbart et al., 2019 ). Incorpo-
ating such higher-level cognitive processes as feedback mechanisms in
he model will likely influence the neural network’s capability for speech
ncoding. Importantly, incorporation of these mechanisms in the model
ill allow us to simulate how they may be influenced by tACS and de-

ermine their contribution to the neural processing underlying speech-
n-noise comprehension. 

Because our model is based on the hypothesis of speech encod-
ng through coupled neural oscillations ( Giraud and Poeppel, 2012 ;
yafil et al., 2015 ), it might be used in the future to generate further
redictions of how speech processing can be impacted by neurostimula-
ion. Experimental verification or falsification of such predictions may
llow to further establish the neural mechanisms of speech processing,
nd in particular to further investigate the role of coupled cortical os-
illations. Moreover, our modelling framework may also be adapted to
ssess the effects of neurostimulation on the neural processing of other
ounds, such as on music perception that may involve coupled oscilla-
ions as well. 

Further developments of the model may also integrate it with struc-
ural modelling that seeks to estimate the current intensity in different
rain regions for a certain placement of the electrodes and applied cur-
ent ( Thielscher et al., 2015 ; Huang et al., 2019 ). In particular, such
odelling may be based on subject-specific data like MRI images that
ight allow to obtain subject-specific outcomes, for instance regarding

urrent intensities and neural delays. Integrating structural and func-
ional modelling might therefore facilitate the understanding of inter-
ubject variations as well as allow to optimize stimulation parameters
or an individual subject. 
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