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Spoken language comprehension requires rapid and continuous integration

of information, from lower-level acoustic to higher-level linguistic features.

Much of this processing occurs in the cerebral cortex. Its neural activity

exhibits, for instance, correlates of predictive processing, emerging at delays

of a few 100 ms. However, the auditory pathways are also characterized by

extensive feedback loops from higher-level cortical areas to lower-level ones

as well as to subcortical structures. Early neural activity can therefore be

influenced by higher-level cognitive processes, but it remains unclear whether

such feedback contributes to linguistic processing. Here, we investigated early

speech-evoked neural activity that emerges at the fundamental frequency. We

analyzed EEG recordings obtained when subjects listened to a story read by

a single speaker. We identified a response tracking the speaker’s fundamental

frequency that occurred at a delay of 11ms, while another response elicited by

the high-frequency modulation of the envelope of higher harmonics exhibited

a larger magnitude and longer latency of about 18 ms with an additional

significant component at around 40ms. Notably, while the earlier components

of the response likely originate from the subcortical structures, the latter

presumably involves contributions from cortical regions. Subsequently, we

determined the magnitude of these early neural responses for each individual

word in the story. We then quantified the context-independent frequency

of each word and used a language model to compute context-dependent

word surprisal and precision. The word surprisal represented how predictable

a word is, given the previous context, and the word precision reflected the

confidence about predicting the next word from the past context. We found

that the word-level neural responses at the fundamental frequency were

predominantly influenced by the acoustic features: the average fundamental

frequency and its variability. Amongst the linguistic features, only context-

independent word frequency showed a weak but significant modulation of

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.915744
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.915744&domain=pdf&date_stamp=2022-07-22
mailto:tobias.j.reichenbach@fau.de
https://doi.org/10.3389/fnins.2022.915744
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2022.915744/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Kegler et al. 10.3389/fnins.2022.915744

the neural response to the high-frequency envelope modulation. Our results

show that the early neural response at the fundamental frequency is already

influenced by acoustic as well as linguistic information, suggesting top-down

modulation of this neural response.

KEYWORDS

spoken language processing, fundamental frequency, auditory brainstem, language,

EEG

1. Introduction

Spoken language consists of both lower-level acoustic as well

as higher-level linguistic information that need to be rapidly

and continuously processed in the brain (Giraud and Poeppel,

2012; Meyer, 2018; Brodbeck and Simon, 2020). The lower level

acoustic processing is thereby typically attributed to the primary

auditory cortex, and the processing of higher-level information

to the secondary auditory cortex as well as other cortical areas

such as the prefrontal cortex (Hickok and Poeppel, 2007; Peelle

et al., 2010; Golumbic et al., 2012).

Linguistic processing encompasses both context-

independent and context-dependent aspects. An important

context-independent aspect is word frequency, that is, the

frequency of a word in a large text corpus (Baayen, 2001).

This information has been found to be reflected in neural

activity from the cerebral cortex (Brennan et al., 2012, 2016;

Brodbeck et al., 2018). Context-dependent processing is another

important linguistic aspect of speech encoding, especially in

noisy auditory scenes. Behavioral studies have, for instance,

shown that sentences with missing parts or added noisy

intrusions can still be understood by the participants (Miller

and Isard, 1963; Warren, 1970; Rubin, 1976; Dilley and Pitt,

2010; Clarke et al., 2014).

The word expectancy resulting from context is reflected in

cortical responses. Indeed, words elicit cortical negativity at a

latency of about 400 ms, the N400 response, and the N400

is modulated by word expectancy (Kutas and Hillyard, 1984).

Word prediction and violations of such predictions are reflected

in further aspects of cortical activity such as the beta- and

gamma-band power, as has been found in studies using single

sentences (Friederici et al., 1993; Friederici, 2002; Bastiaansen

and Hagoort, 2006; Kutas and Federmeier, 2011; Kielar et al.,

2014). Moreover, we and others recently showed that cortical

activity recorded from electroencephalography (EEG) acquired

when subjects listened to stories consisting of many sentences

exhibited correlates of word surprisal, that is, of the violation of

word predictions, as well as of the precision at which predictions

were made (Donhauser and Baillet, 2020; Weissbart et al., 2020;

Gillis et al., 2021). The word-level surprisal is thereby defined as

the conditional probability of the current word, given previous

words. The word-level precision is the inverse entropy of the

word, given the past context. Cortical activity during natural

story comprehension has also been found to reflect the semantic

dissimilarity between consecutive words (Broderick et al., 2018,

2019).

Although the auditory system is often viewed as a feed-

forward network of different neural processing stages, there

exist corticofugal feedback connections from the cortex to the

midbrain as well as to different parts of the auditory brainstem

(Huffman and Henson, 1990; Winer, 2005). A particular early

neural response to speech that can potentially be under such

top-down control is the neural tracking of the fundamental

frequency. Voiced parts of speech are characterized by a

fundamental frequency, typically between 100 Hz and 300 Hz,

as well as many higher harmonics. The elicited neural activity

as recorded by EEG exhibits a response primarily at the

fundamental frequency, as well as, to a lesser extent, at the higher

harmonics (Chandrasekaran and Kraus, 2010; Skoe and Kraus,

2010). The response has a short latency of around 10 ms and

originates mainly in the auditory brainstem and in the midbrain,

although cortical contributions have been discovered recently as

well (Chandrasekaran and Kraus, 2010; Coffey et al., 2016, 2017,

2019; Bidelman, 2018).

The early neural response at the fundamental frequency

of speech can reflect different aspects of speech processing. It

can, in particular, be shaped by language experience as well as

by musical training (Wong et al., 2007; Krishnan et al., 2010;

Bidelman et al., 2011; Kraus et al., 2017). In addition, we recently

showed that this response is modulated by selective attention to

one of two competing speakers (Forte et al., 2017; Etard et al.,

2019). Moreover, a strong bidirectional functional connectivity

between cortical and subcortical areas through corticofugal

pathways was found in a speech-in-noise perception task (Price

and Bidelman, 2021).

The frequency-following response (FFR) to the frequency

of a pure tone can occur in a similar frequency range as

the neural response at the fundamental frequency of speech,

and presumably reflects related processing. As such, effects

modulating the pure-tone FFR might also impact the neural

response at the fundamental frequency. Previous studies have

shown that FFR may be under cognitive top-down control. In
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particular, an oddball paradigm in which many repeated tones

are presented together with occasional deviant tones showed

that the FFR is larger for expected than for unexpected ones,

although a later study could not replicate the effect (Slabu

et al., 2012; Font-Alaminos et al., 2021). Invasive recordings

in animals likewise showed correlates of prediction errors at

different subcortical as well as cortical stages (Parras et al., 2017).

Whether the early neural response at the fundamental

frequency of speech is modulated by linguistic processing

has not yet been investigated. The main difficulty is thereby

the complexity of natural speech that complicates both the

measurement of the neural response and the assessment

of its modulation through linguistic information. However,

recent studies have developed the methodology to measure

the neural response at the fundamental frequency of speech

even for continuous, non-repetitive speech stimuli. We recently

proposed an approach in which we extracted a fundamental

waveform from voiced speech, that is, a waveform that, at

each time instance, oscillated at the time-varying fundamental

frequency of speech (Forte et al., 2017). We then related this

waveform to EEG that was recorded simultaneously through

linear regression with regularization (Etard et al., 2019).

Kulasingham et al. (2020) recently used a similar method

to show that high-frequency modulation of the envelope is

also tracked by the early neural response at the fundamental

frequency.

Here, we employed the recently developed methodology

to measure neural responses at the fundamental frequency of

individual words that occur in continuous natural speech. We

also quantified key word features, including both acoustic and

linguistic ones. We then investigated whether the early response

to speech was shaped by these word-level features.

2. Materials and methods

2.1. Dataset

We analyzed EEG responses to continuous speech that were

collected for an earlier study on cortical correlates of word

prediction (Weissbart et al., 2020). The recording of this dataset

is described in detail below.

2.2. Participants

13 young and healthy native English speakers (25 ± 3 years,

6 females) were recruited for the experiment. They were all

right-handed and had no history of hearing or neurological

impairment. All volunteers provided written informed consent.

The experimental protocol was approved by the Imperial College

Research Ethics Committee.

2.3. Experimental setup

The experiment consisted of a single session of EEG

recording. During the experiment, the participants listened to

continuous narratives in the form of audiobooks that were

openly available at ‘librivox.org’. In particular, we used three

short stories: ‘Gilray’s flower pot’, ‘My brother Henry’ by J.M.

Barrie and ‘An undergraduate’s aunt’ by F. Anstey (Patten,

1910)1. Both audiobooks were read by a male speaker, Gilles G.

Le Blanc. The total length of the audio material was 40 min. The

stories were presented in 15 parts, each approximately 2.6 min

long (2.6 min ± 0.43 min). The acoustic signals were presented

to the participants through Etymotic ER-3C insert earphones

(Etymotic, USA) at 70 dB SPL. The audiobooks’ transcriptions

used for computing word-level features were obtained from the

project Gutenberg2.

After each part, the participants answered multiple-choice

comprehension questions presented on a monitor. Each

participant was asked 30 questions throughout the experiment.

The questions were designed to keep the volunteers engaged

and to assess whether they paid attention to the stories. The

participants answered the questions with an average accuracy of

96%, showing that they paid attention to the audio material and

understood it.

2.4. EEG acquisition

The brain activity of the participants was measured using

a 64-channel EEG system (active electrodes, actiCAP, and

EEG amplifier actiCHamp, BrainProducts, Germany). The left

ear lobe served as a reference. The impedance of all EEG

electrodes was kept below 10 k�. The audio material presented

to the participants was simultaneously recorded through an

acoustic adapter (Acoustical Stimulator Adapter and StimTrak,

BrainProducts, Germany) and used for aligning the EEG

recordings to the audio signals. The EEG and the audio data were

both recorded at a sampling rate of 1 kHz.

2.5. Auditory stimulus representations

For modeling the early neural response at the fundamental

frequency of speech from the high-density EEG, we followed the

methodology developed in Etard et al. (2019). In particular, we

used the fundamental waveform as well as the high-frequency

envelope modulation extracted from the speech signals as the

audio stimulus features (Figures 1,2B).

The fundamental waveform is a waveform that oscillates at

the fundamental frequency of the speaker’s voice. The original

1 https://librivox.org/international-short-stories-vol-2-by-william-patten/

2 http://www.gutenberg.org/ebooks/32846
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FIGURE 1

Auditory features for modeling the neural responses at the fundamental frequency. First, the fundamental waveform (red) was obtained by

band-pass filtering the audio signal. Second, the high-frequency modulation of the envelope modulation was computed as well. The audio

input was therefore transformed into an auditory spectrogram using a model of the auditory periphery. The frequency bins of the auditory

spectrogram above 300 Hz were then filtered in the range of the fundamental frequency. The filtered bins were finally averaged to obtain the

envelope modulation (blue).

algorithm for computing the fundamental waveform was based

on empirical mode decomposition (Huang and Pan, 2006; Forte

et al., 2017). However, Etard et al. (2019) showed that direct

band-pass filtering of the speech signal is considerably simpler,

faster to compute and leads to the same result (Kulasingham

et al., 2020; Bachmann et al., 2021; Van Canneyt et al., 2021a,b).

Here, we also employed a band-pass filter to extract the

fundamental waveform from the voice recordings.

We used the software Praat (Boersma, 2001) and its Python

interface Parselmouth (Jadoul et al., 2018) to estimate the

fundamental frequency in the voice recordings presented to the

participants (44,100 Hz sampling rate). The mean fundamental

frequency of the speaker was 107.2 Hz with a standard deviation

of 24.8 Hz. The frequencies corresponding to the 5th and

95th percentiles of the speaker’s pitch distribution (75 Hz and

150 Hz, respectively) were used as corner frequencies of the

bandpass filter. An FIR bandpass filter (7785th order, one-pass,

zero-phase, non-causal, Hamming window, lower transition

bandwidth: 18.7 Hz, upper transition bandwidth: 38.12 Hz)

was then applied to filter the speech recordings. The resulting

fundamental waveform was finally downsampled to 1 kHz to

match the sampling rate of the EEG.

Since the neural response at the fundamental frequency

might not emerge directly from the tracking of the speaker’s

pitch but reflect the high-frequency envelope modulation, we

used the latter as an additional feature in our analysis. The

high-frequency envelope modulation was extracted from the

audio signal as originally introduced (Kulasingham et al., 2020).

In particular, first, the audio signal was processed through a

model of the auditory periphery reflecting the early stages of

the auditory processing, including the cochlea, the auditory

nerve and the subcortical nuclei (Chi et al., 2005)3 to obtain

the auditory spectrogramwith amillisecond temporal resolution

(matching the sampling rate of the EEG).

The frequency bins of the obtained auditory spectrogram

corresponding to the higher harmonics above 300 Hz were then

band-pass filtered in the range of the fundamental frequency,

between 75 and 150 Hz (same FIR filter as for the fundamental

waveform feature). The filtered signals were averaged to form

the high-frequency envelope modulation feature. Similarly to

the previous study employing the same pair of stimulus

features (Kulasingham et al., 2020), we found a negative

correlation of r = −0.28 (Pearson’s) between the fundamental

waveform and the high-frequency envelope modulation.

2.6. EEG modeling

Firstly, the acquired EEG data (1 kHz sampling rate) was

band-pass filtered between 50 and 280 Hz (265th order FIR one-

pass, zero-phase, non-causal filter, Hamming window, lower

transition bandwidth: 12.5 Hz, upper transition bandwidth:

70 Hz) and re-referenced to the average. The pre-processed EEG

data and the stimulus features obtained from the corresponding

speech signal were used to fit linear models following the

methodology developed in Etard et al. (2019). EEG pre-

processing and modeling pipelines were implemented through

custom-written Python scripts using NumPy (Harris et al.,

3 We used the open-source Python implementation of the model

available at https://github.com/MKegler/pyNSL.
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2020), SciPy (Virtanen et al., 2020) and MNE open-source

packages (Gramfort et al., 2014).

2.6.1. Forward model

The forward models were designed to have complex

coefficients. This approach allowed us to assess both the

magnitude and the phase of the underlying neural response

(Forte et al., 2017; Etard et al., 2019). The complex forward

model was designed to predict the multi-channel EEG response

r(t, c) at channel c from the two stimulus features f1(t) and f2(t),

where f1(t) represents the fundamental waveform and f2(t) the

envelope modulation (Figures 1,2B). In particular, at each time

instance t, the EEG signal was estimated as a linear combination

of the stimulus features f1(t) and f2(t) as well as their Hilbert

transforms f
(h)
1 (t) and f

(h)
2 (t) at a time lag τ :

r(t, c) =

2∑

j=1

T∑

τ=1

[α
(r)
τ ,c,jfj(t − τ )+ α

(i)
τ ,c,jf

(h)
j (t − τ )] (1)

where α
(r)
τ ,c,j and α

(i)
τ ,c,j are real coefficients that can be interpreted

as real and imaginary parts of a complex set of coefficients

ατ ,c,j = α
(r)
τ ,c,j + i · α

(i)
τ ,c,j. These coefficients are referred to as

temporal response function (TRF) since they describe the time

course of the neural response r to the two stimulus features f1

and f2. We note that the forward models is fitted using the two

stimulus features simultaneously, analogously to Kulasingham

et al. (2020).

We used T = 750 time lags ranging from –250 ms (i.e., the

stimulus is preceded by the EEG signal, thus anticausal) up to

499 ms. We chose a broad range of time lags, including a latency

range typical for cortical responses, to include both early and

putative late responses. The model coefficients were obtained

using ridge regression (Hastie et al., 2009) with a regularization

parameter λ = λn · em, where λn is a normalized regularization

parameter and em is the mean eigenvalue of the covariance

matrix, to which the regularization was added (Biesmans et al.,

2017). For the forward model, we used a fixed normalized

regularization parameter of λn = 1. Prior to fitting the model,

each EEG channel and the stimulus features were standardized

by subtracting their mean and dividing them by their standard

deviation.

A complex forward model was computed separately for each

participant. The subject-specific models were then averaged to

obtain a population-averaged model. The magnitudes of the

complex coefficients were computed by taking their absolute

values, and the phases by computing their angles. To summarize

the contribution of different time lags, the magnitudes of the

population-averaged model were additionally averaged across

channels to obtain a single value per time lag. This value,

reflecting the contribution of each time lag to the model, allowed

us to estimate the latency of the predominant neural response.

To assess the significance of the forward model, we

established null models using time-reversed stimulus features.

Due to the mismatch between the speech features and the EEG

signal, the null models were purposefully designed to reflect no

meaningful brain response across the entire range of time lags.

One null model was obtained for each subject. We bootstrapped

the population-level null models by re-sampling null models

across participants (with replacement), averaging them and

computing their magnitudes across time lags in the same way

as for the actual forward model. This procedure was repeated

10,000 times to form a distribution of null model magnitudes

across time lags. We therefrom computed an empirical p-value

for each time lag by counting how many values from the null

distribution exceeded the actual forward model for each time

lag. Finally, the obtained p-values were corrected for multiple

comparisons using the Benjamini-Yekutieli method (Benjamini

and Yekutieli, 2001). The method is conceptually similar to the

mass univariate analysis commonly used to study event-related

potentials (Groppe et al., 2011).

2.6.2. Backward model

Backward models were designed to reconstruct the two

stimulus features f1(t) and f2(t) from the time-lagged multi-

channel EEG response r(t, c). In particular, for each time

instance t, the stimulus features were reconstructed as follows:

fj(t) =

T∑

τ=1

N∑

c=1

βτ ,c,j · r(t − τ , c) (2)

where βτ ,c,j are real-valued model coefficients, j ∈ {1, 2} denotes

the stimulus feature, c represents the index of the EEG channel,

and τ is a time lag between the auditory stimulus features and

the EEG recording. Here, we used T = 55 time lags ranging

from –5ms (i.e., the EEG signal preceded the stimulus) to 49 ms.

The range of time lags for the backward models was selected

based on the temporal window capturing all significant time lags

identified from the forward model. Including a broader range

of time lags (associated with no significant neural response)

greatly increases the model complexity but does not influence

the reconstruction performance. Analogously, we only used

real and not complex model coefficients, since the use of the

latter did not impact the reconstruction performance but greatly

decreased the computational cost.

The coefficients of the backwardmodels were obtained in the

same way as for the forward model using ridge regression. We

evaluated 51 logarithmically-spaced normalized regularization

parameters λn ranging from 10−10 to 1010. Analogously to

the forward models, the backward models were fitted using

two stimulus features simultaneously. Backward models were

evaluated through five-fold cross-validation (Hastie et al., 2009).

In particular, all the available data were split into five folds of

the same duration of approximately 8 min. Four folds were used
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to train the backward model, and the remaining one was kept

aside for evaluating the model. Each time, 51 models, one for

each regularization parameter, were trained and evaluated.

Using the approach described above, we investigated how

the amount of available data influenced the reconstruction

performance. In each fold of the cross-validation, we split

the testing data into either segments of arbitrary lengths

or according to the word boundaries. The performance of

each model was quantified by computing Pearson’s correlation

coefficient between the reconstructed stimulus features and the

actual one. After evaluating the models on all segments, another

fold of the data was selected as the testing set. The procedure

was repeated five times until all the available data was used. This

yielded reconstruction scores that reflected the strength of the

neural response.

To test whether segmenting the evaluation data according

to word boundaries yielded different performances in

reconstructing the fundamental waveform, we compared

it to the reconstruction scores obtained using segments of

arbitrary duration agnostic of word onsets. Through this

analysis we wanted to investigate whether the way data is fed to

the backward model can impact its reconstruction performance.

For instance, the speaker’s pitch tends to be more stable within

the same word and can change more across consecutive words.

As a result, regular, word-boundary-agnostic chunking of

the testing data may lead to different reconstruction scores

as compared to evaluating the decoder using single-word

data segments.

We considered six different durations of the arbitrarily-

long testing segments. Since the averaged word duration was

260 ms, we chose the fixed evaluation segment durations to be

100 ms, 260 ms (the mean word duration), 310 ms (the median

word duration), 1 s, 10 s and 30 s. We evaluated the backward

models as specified above for all 13 subjects. In particular,

reconstruction scores from all testing segments across all the

folds were averaged to summarize the model performance for

each subject. For this analysis, we used the fixed normalized

regularization parameter λn = 1.

We thereby obtained 13 averaged reconstruction scores (one

per subject) for each stimulus feature (fundamental waveform

and envelope modulation) and for each segment duration.

For each stimulus feature, we performed the Friedman test,

a non-parametric equivalent of ANOVA, to assess whether at

least one of the evaluation segment lengths yielded different

reconstruction scores from the others. Then, we performed

a posthoc test on the results for each pair of segment

durations through the Wilcoxon signed-rank test. In addition,

the reconstruction scores for the two stimulus features were

compared for each segment duration. The p-values obtained

from the above tests were corrected for multiple comparisons

using the Benjamini-Yekutieli method (Benjamini and Yekutieli,

2001).

The null models that represented the chance-level

reconstruction scores were obtained in the same way as

described above, but using the time-reversed stimulus features.

Following the same reasoning as for the forward model, these

models contained no actual brain response and estimated the

chance-level reconstruction scores.

2.7. Word-level features

We used seven distinct word-level features to study

the neural response at the fundamental frequency of

the continuous narratives (Figure 2A). Four linguistic

features were developed in Weissbart et al. (2020) and

are openly available on figshare.com4. In short, the

transcriptions of the stories presented to the participants

were processed through a language model to obtain

the global frequency, surprisal and precision of each

word.

The word frequency reflects the probability of a word out

of local context and was computed from Google N-grams

by taking only the unigram values. As a result, this feature

estimated the unconditional probability of the occurrence of

a word P(w). (We note that this frequency refers to a large

corpus of text, and the frequency of a word in the stories that

the participants listened to can somewhat differ.) To match

the remaining information-theoretic features, we computed the

negative logarithm of this probability −ln(P(w)), and refer to

this feature as the ‘inverted word frequency’ in the following.

Importantly, less frequent words were therefore assigned a

higher inverted word frequency, and more frequent words were

assigned lower values.

In contrast to the inverted word frequency, the word

precision and surprisal were derived from conditional

probabilities of a particular word given the preceding

words. In particular, the probability of the nth word

wn can be expressed as P(wn|w1,w2, . . . ,wn−1). Word

surprisal quantifies the information gain that an upcoming

word generates given the previous words and reflects how

unexpected the word is in its context. Here, the surprisal of

the word wn was computed as the negative logarithm of its

conditional probability:

S(wn) = −ln[P(wn|w1,w2, . . . ,wn−1)]. (3)

In contrast to the word surprisal, the word precision reflects

the confidence about the prediction of the next word given the

previous words. Here, the word precision was computed as the

inverse word entropy, [E(wn)]
−1. On its own, the word entropy

4 https://figshare.com/articles/dataset/EEG_recordings_and_

stimuli/9033983
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represents the uncertainty of predicting the next word wn from

the past context (w1,w2, . . . ,wn−1), and is formulated as:

E(wn)

= −
∑

wk

P(wk|w1,w2, . . . ,wn−1) · ln(P(wk|w1,w2, . . . ,wn−1),

(4)

where wk denotes the kth word from the text corpus.

Finally, to investigate a possible modulating effect that

precision may have on surprisal, an interaction term was

obtained by multiplying precision with surprisal. This feature

can be interpreted as a confidence-weighted surprisal or a

surprisal-dependent precision.

The conditional probabilities, required for computing the

word surprisal and precision, were obtained from a recurrent

neural network (RNN) language model introduced in Mikolov

et al. (2011). The model was designed to predict the current

word wn given the previous words w1,w2, ...,wn−1. Firstly,

embeddings of words in the input text were obtained using pre-

trained global vectors for word representation (GLOVE) trained

on the Wikipedia 2014 and Gigaword 5 datasets (Pennington

et al., 2014). The obtained embeddings were projected to 350

recurrent units forming the hidden layer of the model. The

output layer of the model was a softmax function, from which

the word probabilities were computed. Such model was trained

on the text8 dataset, consisting of 100 MB of text data from

Wikipedia (Mahoney, 2011), using backpropagation through

time and a 0.1 learning rate. Prior to the training, the text data

was cleaned to remove punctuation, HTML, capitalization and

numbers. In addition, to facilitatemodel training, the vocabulary

was limited to the 35,000 most common words in the dataset.

The remaining rare words were assigned an ‘unknown’ token.

For more implementation details of the model itself and its

training, please seeWeissbart et al. (2020) where the method was

originally developed.

Having obtained the above-described linguistic features,

each word in the story was aligned to the acoustic signal using

a forced alignment algorithm implemented in the Prosodylab-

Aligner software (Gorman et al., 2011). Subsequently, we

computed three additional acoustic features for each word. In

particular, we used the Praat & Parselmouth Python interface

(Boersma, 2001; Jadoul et al., 2018) to obtain the evolution of

the speaker’s fundamental frequency across the story recording.

For each word, we then computed the duration of its voiced

part, its mean fundamental frequency and the rate of the change

in the fundamental frequency. The latter feature was obtained

by averaging the absolute value of the first derivative of the

fundamental frequency’s time course across the voiced duration,

as described by Van Canneyt et al. (2021b). Including these

three features in our analysis allowed us to control for purely

acoustic modulation of the neural response at the fundamental

frequency.

2.8. Stepwise hierarchical regression

We first determined the strength of the neural response

at the fundamental frequency for the ith word. To this end,

the backward models for each participant were evaluated to

obtain a reconstruction score for each word in the story (N =

6, 345). One hundred words did not contain a voiced part,

and were therefore discarded from further analysis. For each

remaining word, we obtained 51 reconstruction scores, one for

each normalized regularization parameter λn.

We picked the optimal regularization parameter λmodel

individually for each word in the story, to obtain the best

stimulus feature reconstruction. To control for overfitting, the

same procedure was applied to the backward null models that

did not contain a meaningful brain response. Possible inflation

of the reconstruction score r(i) from overfitting was corrected

by subtracting the score obtained by the null model rnull(i) from

that of the actual decoder rmodel(i):

r(i) = max
λmodel

rmodel(i)−max
λnull

rnull(i). (5)

The above procedure was applied independently to the

reconstruction scores obtained for the two stimulus features, the

fundamental waveform and the envelope modulation.

We note that the optimal word-level regularization

parameter was picked independently for the actual (λmodel)

and the null model (λnull). Controlling for overfitting in

this empirical manner allowed to avoid pre-selecting a fixed

regularization parameter, which could either inflate or deflate

reconstruction scores. However, as an additional control, we

also computed the reconstruction scores with a pre-selected

regularization parameter of λmodel = 1. The resulting

reconstruction scores were not significantly different from

those obtained with the procedure outlined above (p > 0.382,

Wilcoxon signed-rank test). Having computed the single-

word reconstruction scores for each participant, we averaged

them across the subjects for each word in the story to obtain

population-level single-word reconstruction scores.

We then investigated whether the word-level acoustic and

linguistic features modulated the early neural response at

the fundamental frequency, that is, whether they modulated

the single-word reconstruction scores. To this end, we first

standardized both the single-word reconstruction scores r and

the word-level features x by subtracting their mean and dividing

them by their standard deviation. In addition, we used the

isolation forest (Liu et al., 2008), an unsupervised algorithm

based on the random forest, for detecting outliers and anomalies.

In this method, data points corresponding to the words

in the stories and described by the word-level features

and the reconstruction scores (eight descriptors) were

processed through a set of 1,000 random trees established

based on the dataset statistics. The algorithm measured

the average path it took each data point to traverse from
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FIGURE 2

Word-level features. (A), An exemplary part of a speech signal (black). Dashed vertical lines represent word onsets. Seven features (colored) were

used to describe each word in the stories presented to the participants. Three of them—the averaged fundamental frequency (f0), the rate of f0

change and the duration of the voiced part—were acoustic features based on the voiced parts of each word. The remaining four

features—inverted word frequency, word surprisal, word precision and the interaction of precision and surprisal—were derived from a language

model and characterized linguistic properties of each word. (B), The two stimulus features extracted from the exemplary audio segment, the

fundamental waveform (red) and the high-frequency (HF) envelope modulation (blue). (C), Pairwise correlations between word-level features.

Significant correlations (p < 0.05, after correcting for multiple comparisons using the Benjamini-Yekutieli method) are denoted in bold.

the roots of the trees in the random forest to their leaf

nodes. Since the outliers contained extreme descriptor

values, they reached leaf nodes earlier, yielding shorter

paths. The threshold for the path length qualifying the

data point as an outlier was determined automatically

based on the dataset-wide statistics. Here, we used the

implementation of the method included in the scikit-learn

Python package (Pedregosa et al., 2011). Following the outlier

removal, 5,732 data points corresponding to different words in

the stories remained.

We then related the single-word reconstruction scores to

the word-level features through stepwise hierarchical regression.

The approach was inspired by the stepwise and hierarchical

regression commonly used for feature selection in multiple

regression models (Lewis, 2007). However, neither of the

standard approaches is suited for the cases in which the

explanatory variables exhibit a degree of multicollinearity.

Since the word-level linguistic and acoustic features were

indeed correlated (Figure 2C), we employed a stepwise approach

based on the expected effect size for each feature, in a

hierarchical manner.

The n word-level features were first ordered from that with

the highest expected predictive power, x(1), to that with the

lowest expected predictive power, x(n). In the first step of the

procedure, the word-level feature x(1) from the ordered list was

used to fit a linear model to predict word-level reconstruction

scores r: r̂i = ax
(1)
i with a coefficient a, assuming that r and x

were standardized. In this equation, xi denotes the world-level

features of the ith word, and ri its reconstruction score.

The feature was then projected out from the word-level

reconstruction scores r by subtracting the estimated word-level

reconstruction scores r̂i from the actual ones: r
(1)
i = ri − r̂i.

The residual reconstruction scores r
(1)
i were used as a response

variable for fitting the next linear model using the next word-

level feature x(2) from the ordered list. The process was repeated

until all available word-level features were used.

By projecting out the predictions obtained from subsequent

word-level features, we assured that a possible predictive
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contribution of a feature with a lower expected predictive

power did not result from that of a feature with a higher

expected predictive power due to shared variance. The stepwise

hierarchical regression, therefore, constituted a conservative

manner to ensure that any contributions from features with

lower expected predictive power were indeed real, and that their

significance was not inflated due to the shared variance with

features with a higher expected predictive power. In particular,

the procedure ensured that any observed contribution of the

higher-level linguistic features did not erroneously arise due to

correlation with a lower-level acoustic feature.

To further reduce the influence of the extreme data points on

the model coefficients, we fitted the linear models in the stepwise

hierarchical regression through robust regression, using Huber

weighting of the residuals (Andrews, 1974), instead of the

ordinary least squares regression.

Regarding the ordering of the different features, due to the

reported significant impact of the acoustic features on the neural

response at the fundamental frequency (Saiz-Alía et al., 2019;

Saiz-Alía and Reichenbach, 2020; Van Canneyt et al., 2021b),

we prioritized these above the linguistic features that likely have

a weaker impact. We adopted the following ordered list of the

word-level features for the stepwise hierarchical regression: (1)

average fundamental frequency f0, (2) rate of the change in f0,

(3) duration of the voiced part, (4) inverted word frequency, (5)

word precision, (6) word surprisal, and (7) precision x surprisal.

The stepwise hierarchical regression was applied for

both stimulus features, the fundamental waveform and the

envelope modulation, for which the reconstruction scores were

computed. Each time, the output of the procedure was a set

of seven linear models corresponding to the seven word-level

features. The p values reflecting the significance of each model

coefficient were corrected for multiple comparisons using the

Benjamini-Yekutieli method (Benjamini and Yekutieli, 2001).

Notably, the proposed approach shares similarities with the

analysis of word-level speech envelope reconstruction from low-

frequency cortical responses presented in Broderick et al. (2019).

Therein, the authors also computed per-word reconstruction

scores and related them to the four word-level features: semantic

dissimilarity, envelope variation, average relative pitch and

average resolvability. These word-level features were related to

the envelope reconstruction scores through a linear mixed-

effects model. On the contrary to Broderick et al. (2019), here

we focus on studying early neural response at the fundamental

frequency and use different word-level features. Furthermore,

we refined the method by considering outlier analysis and

removal, which could bias the results, as well as adopting the

stepwise hierarchical regression to combat correlation between

word-level features and identify their unique contributions.

The methods described above were implemented via

custom-written Python scripts using NumPy (Harris et al.,

2020), SciPy (Virtanen et al., 2020) and statsmodels open-source

packages (Seabold and Perktold, 2010).

3. Results

3.1. Relations between the word-level
acoustic and linguistic features

We computed Pearson’s correlation coefficient between

each pair of features (Figure 2C). The obtained correlation

ranged from−0.157 to 0.632. The highest correlation coefficient

(r = 0.632) emerged between surprisal and the interaction of

surprisal and precision. Another significant positive correlation

(r = 0.431) arose between inverted word frequency and

surprisal, indicating that less frequent words tended to be

more surprising. Similarly, a positive correlation (r = 0.406)

between voiced duration and surprisal showed that more

surprising words had longer voiced parts and were presumably

longer overall. A positive correlation (r = 0.632) between

inverted word frequency and voiced duration indicated that less

frequent words tend to be longer. The remaining correlations

between features were comparatively small, between −0.157

and 0.274. The rate of fundamental frequency change was the

least correlated with other features. It was only significantly

correlated with the inverted word frequency (r = 0.129).

3.2. Early neural response at the
fundamental frequency

We investigated the neural response at the fundamental

frequency through the temporal response functions (TRFs)

obtained from the forward model (Haufe et al., 2014). In

particular, we examined the model coefficients associated with

the two considered stimulus features, the fundamental waveform

and the high-frequency envelope modulation.

For the neural response to the fundamental waveform

(Figures 3A–C), the channel-averaged TRFs yielded significant

responses for short delays between 9 and 12 ms, with a peak

at 11 ms. The TRFs at the peak delay showed the highest

magnitudes in the central-frontal and occipital regions, as well

as at the mastoid electrodes. The phase relationship of the model

coefficients at the delay of 11 ms exhibited a phase shift of

approximately π between the frontal and occipital areas, and a

slightly larger phase difference between the central-frontal and

the mastoid electrodes.

For the response to the envelope modulation

(Figures 3D–F), the channel-averaged TRFs showed significant

contributions between 2 and 33 ms as well as 44–46 ms, with a

peak at 18 ms. Notably, the averaged magnitudes of the model’s

coefficients for this response were over two times larger than

for the response to the fundamental waveform. Despite the

peak magnitude occurring later, the topographical pattern of

the model coefficients, both in terms of magnitudes and phases,

was similar to that obtained for the response to the fundamental

waveform. In particular, the largest magnitudes were obtained
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FIGURE 3

Early neural response at the fundamental frequency of continuous speech. (A–C), Response to the fundamental waveform. (A), The magnitude

of the complex coe�cients of the forward model (red), averaged across EEG channels and subjects exhibited a peak at an early latency of 11 ms

(gray dashed line). The comparison of the complex TRF magnitudes to a null model (black solid line) showed that significant responses emerge

only at latencies around the peak latency, between 9 and 12 ms (thicker red line, p < 0.05, corrected for multiple comparisons). (B), At the peak

latency of 11 ms, the largest contribution to the TRF came from central-frontal and occipital areas, as well as from the mastoid electrodes. (C),

The phase of the model coe�cients indicated a phase shift of approximately π between the frontal area on the one hand and the occipital and

mastoid electrodes on the other hand. (D–F), Neural response to the high-frequency envelope modulation. (D), The average magnitude of the

complex TRF coe�cients was substantially larger than that of the response to the fundamental waveform. In particular, the coe�cients of the

model significantly exceeded the chance level between 2 and 33 ms and 44 ms to 46 ms, with the peak magnitude at 18 ms. (E,F), At the peak

latency of 18 ms the TRFs exhibited similar topographic patterns to those obtained for the response to the fundamental waveform.

for frontal and occipital regions, with a phase difference of

approximately π between them.

3.3. Reconstruction of the stimulus
features from EEG

We then assessed the reconstruction of the stimulus features

from the EEG recordings using backward models (Figure 4).

In particular, we investigated whether the reconstruction

performance varied with the duration of the speech segment on

which the models were tested.

The Friedman test was applied to the reconstruction

scores to assess whether either of the segment duration yields

significantly better reconstructions than the other. For neither

of the features, the test yielded significant results (p > 0.101,

corrected for multiple comparisons), indicating that none of the

considered segment durations, for neither of the two features,

yielded different reconstruction scores from the rest.

However, the reconstruction scores obtained for the

envelope modulation feature were overall higher than those

obtained for the fundamental waveform. In particular, the

differences were significant for some segment durations

(Wilcoxon signed-rank test, 0.1 s - p = 0.055; 0.26 s - p = 0.037;

0.31 s - p = 0.037; 1.0 s - p = 0.037; 10.0 s - p = 0.052;

30.0 s - p = 0.049; words - p = 0.037, all corrected for multiple

comparisons). Overall, the slightly higher reconstruction score

for the envelope modulation feature is in agreement with the

forward model, whereby the envelope modulation features also

yielded higher neural response (reflected by the forward model

coefficients).

3.4. Modulation of the early neural
response at the fundamental frequency
through acoustic and linguistic features

We used stepwise hierarchical regression to investigate the

acoustic and linguistic modulation of the early neural response

at the fundamental frequency of continuous speech. Through

this method, we predicted the word-level reconstruction scores

of the backward model, reflecting the strength of the neural

response, from the seven word-level features (Figure 2A).
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FIGURE 4

We evaluated the reconstruction of the stimulus features from

the EEG recordings using segments of di�erent duration,

including segments aligned with the word boundaries (words).

For each segment duration, the population-averaged

reconstruction scores obtained for the fundamental waveform

feature are denoted with red circles, and for the envelope

modulation with blue triangles. The error bars correspond to the

standard error of the mean across participants. For both

features, the reconstruction scores yielded much higher

correlation coe�cients as compared to their respective null

models (black crosses).

We first predicted the reconstruction scores related

to the fundamental waveform (Figure 5 and Table 1). Of

the considered acoustic word-level features, the average

fundamental frequency (f0) of a word’s voiced part (−0.075,

p = 2 · 10−7) and the rate of change of the fundamental

frequency (−0.083, p = 2 · 10−5) both yielded significant model

coefficients with similar values. The negative values of the model

coefficients showed that higher average fundamental frequency

and higher associated variability lead to less neural tracking of

the fundamental waveform. However, neither the duration of

a word’s voiced part nor any of the four considered linguistic

features had a significant influence on the reconstruction scores

(p > 0.3).

We then investigated which word features could predict

the reconstruction scores of the high-frequency envelope

modulation (Figure 6 and Table 2). As for the neural response

to the fundamental waveform, both the average fundamental

frequency and its rate of change significantly modulated the

reconstruction scores. In particular, the average fundamental

frequency was related to an even larger negative coefficient

(−0.170, p = 1 · 10−37) than for the neural response to the

fundamental waveform. In contrast, the rate of change of the

fundamental frequency within words led to a slightly smaller

negative coefficient (−0.070, p = 7 · 10−4). The duration of the

voiced portion of each word did not significantly modulate the

reconstruction scores.

Importantly, the inverted word frequency, the 4th feature in

the hierarchy, was a significant predictor of the reconstruction

scores related to the envelope modulation. This linguistic

feature was assigned a small, but significant, negative coefficient

(−0.040, p = 0.023), indicating that less frequent words (with

higher inverted frequency value) led to less neural tracking of

the high-frequency envelope modulation. In contrast, none of

the context-dependent word-level features (precision, surprisal

and their interaction) yielded significant model coefficients (p >

0.749).

4. Discussion

We showed that the word-level early neural response at

the fundamental frequency of natural speech is modulated

predominantly by acoustic features, but also by one of the

four considered linguistic features, the inverted word frequency.

Previous studies have shown significant modulation of the

neural response at the fundamental frequency by acoustic

differences between different speakers (Saiz-Alía et al., 2019;

Saiz-Alía and Reichenbach, 2020; Van Canneyt et al., 2021b).

Here, we extended these findings by showing that the same effect

persists for fluctuation of acoustic properties between distinct

words produced by the same speaker.

The fundamental frequency of the speech that we employed

varied between 75 and 150 Hz. The neural response occurred

accordingly at comparatively high frequencies. It could be

evoked either directly by the fundamental frequency or by the

high-frequency modulations of higher harmonics (Kulasingham

et al., 2020). We considered both of these features and

included them in our EEG modeling framework. We found

that the response associated with the high-frequency envelope

modulation was considerably stronger than that associated with

the fundamental waveform, as observed previously in MEG

recordings (Kulasingham et al., 2020). We furthermore found

that the response associated with the fundamental waveform

occurred earlier, around 11 ms, as compared to that associated

with the high-frequency envelope modulation, at about 18 ms

and at 44 ms.

The neural response at the fundamental frequency, as

well as the related FFR to pure tones, is mostly attributed

to the subcortical nuclei, the inferior colliculus and the

medial geniculate body (Chandrasekaran and Kraus, 2010;

Skoe and Kraus, 2010). However, recent MEG and EEG

investigations have also identified a cortical contribution, in

particular at frequencies below 100 Hz (Coffey et al., 2016,

2017; Bidelman, 2018; Gorina-Careta et al., 2021). Regarding the

measurements presented here, the earlier response associated

to the fundamental waveform (at a delay of 11 ms) may have

resulted predominantly from the brainstem and midbrain, as

suggested by the low latency, high frequency and sensor-space

topography of the response.

The later response to the high-frequency envelope

modulation (at a delay of about 18 ms as well as at 44 ms)

might, however, represent cortical contributions. Previous

MEG recordings did indeed find cortical responses to the
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FIGURE 5

Dependency of the strength of the neural response to the fundamental waveform on the di�erent word-level features. (A–G) show the

standardized single-word reconstruction scores averaged across 13 participants against the seven standardized word-level features. Each

scatter plot shows data points corresponding to 5,732 words from the story presented to the participants during the EEG acquisition. The slopes

of the red lines correspond to the coe�cients obtained from the stepwise hierarchical regression. Each panel also depicts the model coe�cient

(a) for a given feature and the associated p-value (FDR-corrected). The gray dashed lines are horizontal and indicate no dependency.

TABLE 1 Word-level modulation of the neural response to the fundamental waveform.

Feature Coeff. SE 95% CI z p (FDR)

Average f0 (*) −0.075 0.013 (−0.100;−0.049) −5.716 2 · 10−7

Rate change f0 (*) −0.083 0.018 (−0.117;−0.049) −4.728 2 · 10−5

Voiced duration (n.s.) −0.013 0.013 (−0.039; 0.013) −0.963 1.000

Inverted word frequency (n.s.) −0.027 0.014 (−0.054;−0.001) −1.964 0.300

Word precision (n.s.) −0.046 0.038 (−0.122; 0.029) −1.205 0.829

Word surprisal (n.s.) −0.022 0.014 (−0.047; 0.009) −1.540 0.561

Precision x Surprisal (n.s.) −0.003 0.023 (−0.047; 0.047) −0.125 1.000

The table presents the model coefficients obtained from stepwise hierarchical regression, using the reconstruction scores of the fundamental waveform. It details the model coefficient

(Coeff.), the standard error (SE), the 95% confidence interval (CI), the z statistic (z) and the p-value after the FDR correction for multiple comparison using the Benjamini-Yekutieli

method. Word-level features that yield a significant contribution are highlighted in bold, as well as through an asterisk.

high-frequency envelope modulation of speech at a delay of

about 40 ms (Kulasingham et al., 2020). The latencies of this

response are similar to those in the auditory middle latency

response that is assumed to originate in Heschl’s gyrus (Liegeois-

Chauvel et al., 1994; Yoshiura et al., 1995; Borgmann et al.,

2001). However, due to the considerable autocorrelation of the

stimulus features, our measurements did not allow us to further

resolve these different neural components in the temporal

domain, and the relatively low spatial resolution of our EEG

measurements prevented us from more detailed spatial source

localization as well. We could therefore not distinguish whether

the modulation of the neural response at the fundamental

frequency through the acoustic and linguistic features occurred

at the subcortical level, at the cortical level, or at both.

Irrespective of the precise neural origin of the response,

however, the small latency of the response implies that its

modulation through the linguistic features likely results

from feedback from higher cortical areas at which the

linguistic information in speech is processed. If the relevant

contribution to the neural response originates from subcortical

areas, such as the inferior colliculus, this would require

corticofugal feedback to be involved in linguistic processing.

If a cortical source of the neural response was modulated

by the linguistic features, then the linguistic processing
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FIGURE 6

Dependency of the strength of the neural response to the high-frequency envelope modulation on the di�erent word-level features. (A–G) The

world-level features and the reconstruction scores were standardized. The data points in each plot correspond to 5,732 words, and the slopes

of the red lines show the coe�cients of the stepwise hierarchical regression. We also detail the model coe�cient (a) and the associated p-value

(FDR-corrected). The gray dashed lines are horizontal and indicate no dependency.

TABLE 2 Word-level modulation of the neural response to the high-frequency envelope modulation.

Feature Coeff. SE 95% CI z p (FDR)

Average f0 (*) −0.170 0.013 (−0.195;−0.144) −13.048 1 · 10−37

Rate change f0 (*) −0.070 0.018 (−0.105;−0.036) −3.967 7 · 10−4

Voiced duration (n.s.) −0.015 0.013 (−0.041; 0.010) −1.169 0.880

Inverted word frequency (*) −0.040 0.014 (−0.067;−0.013) −2.889 0.023

Word precision (n.s.) −0.054 0.039 (−0.129; 0.022) −1.388 0.749

Word surprisal (n.s.) −0.007 0.014 (−0.035; 0.020) −0.497 1.000

Precision x Surprisal (n.s.) 0.004 0.023 (−0.041; 0.049) 0.179 1.000

The table presents model coefficient obtained from stepwise hierarchical regression. It lists the model coefficient (Coeff.), the standard error (SE), the 95% confidence interval (CI), the z

statistic (z) and the p-value after the FDR correction for multiple comparison using the Benjamini-Yekutieli method for the different word-level features. Word-level features that yield

significant contributions (p < 0.05) are highlighted in bold, as well as through an asterisk.

would involve feedback projections between different

cortical areas.

To investigate the modulation of this neural response by

the different acoustic and linguistic word-level features, we

developed the methodology to estimate the neural response

at the fundamental frequency at the word level. We tested

the validity of our method by comparing the accuracy of

the stimulus feature reconstruction by the backward models

for different lengths of audio segments. As expected, since

the models were optimized on the same training data, the

segmentation of the evaluation set did not impact the feature

reconstruction scores. The reconstruction performance for the

envelopemodulation feature was however systematically slightly

higher for the envelope modulation feature for all considered

durations. This matches the forward modeling results whereby

the neural response, reflected by the model coefficients, was

much weaker for the fundamental waveform feature.

We employed three acoustic features, the average

fundamental frequency, the rate of the fundamental frequent

change and the duration of the voiced portion of a word. As

discussed above, the first two word-level acoustic features

strongly modulated the neural response at the fundamental

frequency, both that related to the fundamental frequency

and that related to the high-frequency envelope modulation.
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The stronger modulation of the neural tracking of the high-

frequency envelope modulation might be explained by the

stronger neural response to this feature. The impact of the

acoustic features on the neural responses at the fundamental

frequency is in agreement with previous studies of envelope-

following responses (EFRs) (Billings et al., 2019; Van Canneyt

et al., 2020). It is usually attributed to the decrease in neural

phase-locking when the stimulus frequency is higher and highly

variable, which ultimately leads to weaker population responses.

The duration of the voiced portion of words in the story,

however, had no significant impact on the neural tracking

of either of the stimulus features. We note that we excluded

entirely voiceless words from the analysis, since we could

not infer a neural response for those. The neural response at

the fundamental frequency is accordingly relatively similar for

shorter and for longer voiced durations. Although longer voice

durations will allow a better estimate of the neural response, that

is, at a better signal-to-noise ratio, the response itself is indeed

expected to stay constant. In other words, while longer segments

of training data will lead to a more accurate backwardmodel, the

model’s inference capability is independent of the duration of the

data on which it is tested. This result concurs with our finding

that the strength of the neural response remains unaffected by

the duration of the data on which it is evaluated (Figure 4).

Regarding the linguistic features, we considered four

different ones: the inverted frequency of a word irrespective

of its context, the surprisal of a word in its context, the

associated precision, and the interaction of the surprisal and

the precision. We found that the inverted word frequency had

a small but significant impact on the neural response: words

with a higher frequency (i.e., probability out of context) led to a

larger response. Because listeners are exposed to more common

words more often, this modulation may emerge due to the long-

term plasticity. Similar modulation has been observed before in

FFR, where the strength of the response was strongly modulated

by the language experience or musical training (Krishnan et al.,

2010; Bidelman et al., 2011; Krizman and Kraus, 2019).

Importantly, this effect was present only for the neural

response to the high-frequency envelopemodulation, but not for

that to the fundamental frequency. Because, as discussed above,

the former response may contain more cortical contributions

than the latter response, the modulation of the neural response

by the word frequency may emerge from a cortical rather than

subcortical origin. The remaining context-sensitive word-level

features did not yield a significant modulation of the neural

response at the fundamental frequency. If such a modulation

existed, its magnitude was accordingly too weak to be detected

in the non-invasive EEG recording.

For the interpretation of these findings, it is also important

to note that we employed a conservative approach to control

for lower-level acoustic factors, through stepwise hierarchical

regression. This method required to rank the different acoustic

and linguistic features in order of their expected contribution.

It therefore likely biased the results to assign more importance

to the lower-level acoustic features and less to the higher-level

linguistic ones. There may hence well be additional impact of

linguistic features on the neural response beyond that of the

inverted word frequency that we described here. However, the

benefit of the conservative method that we employed was that it

ensured that the effect of the inverted word frequency could not

be attributed to lower-level features.

In summary, we found that the early neural response

at the fundamental frequency of speech is predominantly

modulated by acoustic features, but also by a linguistic feature,

the frequency of a word. The latter result suggests that

linguistic processing at the word level involves feedback from

higher cortical areas to either very early cortical responses

or even further to subcortical structures. We expect that the

further investigation of the underlying neural mechanisms will

increasingly clarify the role and importance of feedback loops

in spoken language processing, with potential applications in

speech-recognition technology.
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way you say it, it’s what you say-perceptual continuity of voice and top-down
restoration of speech. Hear. Res. 315, 80–87. doi: 10.1016/j.heares.2014.07.002

Coffey, E. B., Herholz, S. C., Chepesiuk, A. M., Baillet, S., and Zatorre, R.
J. (2016). Cortical contributions to the auditory frequency-following response
revealed by MEG. Nat. Commun. 7, 1–11. doi: 10.1038/ncomms11070

Coffey, E. B., Musacchia, G., and Zatorre, R. J. (2017). Cortical correlates of
the auditory frequency-following and onset responses: EEG and fMRI evidence. J.
Neurosci. 37, 830–838. doi: 10.1523/JNEUROSCI.1265-16.2016

Coffey, E. B., Nicol, T., White-Schwoch, T., Chandrasekaran, B., Krizman, J.,
Skoe, E., et al. (2019). Evolving perspectives on the sources of the frequency-
following response. Nat. Commun. 10, 1–10. doi: 10.1038/s41467-019-13003-w

Dilley, L. C., and Pitt, M. A. (2010). Altering context speech rate
can cause words to appear or disappear. Psychol. Sci. 21, 1664–1670.
doi: 10.1177/0956797610384743

Donhauser, P. W., and Baillet, S. (2020). Two distinct neural
timescales for predictive speech processing. Neuron 105, 385–393.
doi: 10.1016/j.neuron.2019.10.019

Etard, O., Kegler, M., Braiman, C., Forte, A. E., and Reichenbach, T. (2019).
Decoding of selective attention to continuous speech from the human auditory
brainstem response.Neuroimage 200, 1–11. doi: 10.1016/j.neuroimage.2019.06.029

Font-Alaminos, M., Ribas-Prats, T., Gorina-Careta, N., and Escera, C. (2021).
Emergence of prediction error along the human auditory hierarchy.Hear. Res. 399,
107954. doi: 10.1016/j.heares.2020.107954

Forte, A. E., Etard, O., and Reichenbach, T. (2017). The human auditory
brainstem response to running speech reveals a subcortical mechanism for selective
attention. Elife 6, e27203. doi: 10.7554/eLife.27203

Friederici, A. D. (2002). Towards a neural basis of auditory sentence processing.
Trends Cogn. Sci. 6, 78–84. doi: 10.1016/S1364-6613(00)01839-8

Friederici, A. D., Pfeifer, E., and Hahne, A. (1993). Event-related brain potentials
during natural speech processing: effects of semantic, morphological and syntactic
violations. Cogn. Brain Res. 1, 183–192. doi: 10.1016/0926-6410(93)90026-2

Gillis, M., Vanthornhout, J., Simon, J. Z., Francart, T., and Brodbeck, C.
(2021). Neural markers of speech comprehension: measuring eeg tracking of
linguistic speech representations, controlling the speech acoustics. J. Neurosci. 41,
10316–10329. doi: 10.1523/JNEUROSCI.0812-21.2021

Giraud, A.-L., and Poeppel, D. (2012). Cortical oscillations and speech
processing: emerging computational principles and operations. Nat. Neurosci. 15,
511. doi: 10.1038/nn.3063

Golumbic, E. M. Z., Poeppel, D., and Schroeder, C. E. (2012). Temporal context
in speech processing and attentional stream selection: a behavioral and neural
perspective. Brain Lang. 122, 151–161. doi: 10.1016/j.bandl.2011.12.010

Gorina-Careta, N., Kurkela, J. L., Hämäläinen, J., Astikainen, P., and Escera, C.
(2021). Neural generators of the frequency-following response elicited to stimuli
of low and high frequency: a magnetoencephalographic (MEG) study. Neuroimage
231, 117866. doi: 10.1016/j.neuroimage.2021.117866

Frontiers inNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fnins.2022.915744
https://doi.org/10.14469/hpc/2232
https://doi.org/10.1080/00401706.1974.10489233
https://www.fon.hum.uva.nl/praat/manual/FAQ_How_to_cite_Praat.html
https://www.fon.hum.uva.nl/praat/manual/FAQ_How_to_cite_Praat.html
https://doi.org/10.3389/fnins.2021.738408
https://doi.org/10.1016/S0079-6123(06)59012-0
https://doi.org/10.1214/aos/1013699998
https://doi.org/10.1016/j.neuroimage.2018.03.060
https://doi.org/10.1162/jocn.2009.21362
https://doi.org/10.1109/TNSRE.2016.2571900
https://doi.org/10.1016/j.heares.2019.01.012
https://doi.org/10.1016/S0378-5955(01)00292-1
https://doi.org/10.1016/j.bandl.2010.04.002
https://doi.org/10.1016/j.bandl.2016.04.008
https://doi.org/10.1016/j.neuroimage.2018.01.042
https://doi.org/10.1016/j.cophys.2020.07.014
https://doi.org/10.1016/j.cub.2018.01.080
https://doi.org/10.1523/JNEUROSCI.0584-19.2019
https://doi.org/10.1111/j.1469-8986.2009.00928.x
https://doi.org/10.1121/1.1945807
https://doi.org/10.1016/j.heares.2014.07.002
https://doi.org/10.1038/ncomms11070
https://doi.org/10.1523/JNEUROSCI.1265-16.2016
https://doi.org/10.1038/s41467-019-13003-w
https://doi.org/10.1177/0956797610384743
https://doi.org/10.1016/j.neuron.2019.10.019
https://doi.org/10.1016/j.neuroimage.2019.06.029
https://doi.org/10.1016/j.heares.2020.107954
https://doi.org/10.7554/eLife.27203
https://doi.org/10.1016/S1364-6613(00)01839-8
https://doi.org/10.1016/0926-6410(93)90026-2
https://doi.org/10.1523/JNEUROSCI.0812-21.2021
https://doi.org/10.1038/nn.3063
https://doi.org/10.1016/j.bandl.2011.12.010
https://doi.org/10.1016/j.neuroimage.2021.117866
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Kegler et al. 10.3389/fnins.2022.915744

Gorman, K., Howell, J., and Wagner, M. (2011). Prosodylab-aligner: a tool for
forced alignment of laboratory speech. Can. Acoust. 39, 192–193. Available online
at: https://github.com/prosodylab/Prosodylab-Aligner#citation

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier,
D., Brodbeck, C., et al. (2014). MNE software for processing MEG and
EEG data. Neuroimage 86, 446–460. doi: 10.1016/j.neuroimage.2013.
10.027

Groppe, D. M., Urbach, T. P., and Kutas, M. (2011). Mass univariate analysis
of event-related brain potentials/fields i: a critical tutorial review. Psychophysiology
48, 1711–1725. doi: 10.1111/j.1469-8986.2011.01273.x

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen,
P., Cournapeau, D., et al. (2020). Array programming with NumPy. Nature 585,
357–362. doi: 10.1038/s41586-020-2649-2

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. New York: Springer Science &
Business Media.

Haufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J.-D., Blankertz, B., et al.
(2014). On the interpretation of weight vectors of linear models in multivariate
neuroimaging. Neuroimage 87, 96–110. doi: 10.1016/j.neuroimage.2013.10.067

Hickok, G., and Poeppel, D. (2007). The cortical organization of speech
processing. Nat. Rev. Neurosci. 8, 393–402. doi: 10.1038/nrn2113

Huang, H., and Pan, J. (2006). Speech pitch determination based on hilbert-
huang transform. Signal Process. 86, 792–803. doi: 10.1016/j.sigpro.2005.06.011

Huffman, R. F., and Henson Jr, O. (1990). The descending auditory pathway
and acousticomotor systems: connections with the inferior colliculus. Brain Res.
Rev. 15, 295–323. doi: 10.1016/0165-0173(90)90005-9

Jadoul, Y., Thompson, B., and De Boer, B. (2018). Introducing parselmouth: a
python interface to praat. J. Phon. 71, 1–15. doi: 10.1016/j.wocn.2018.07.001

Kielar, A., Meltzer, J. A., Moreno, S., Alain, C., and Bialystok, E. (2014).
Oscillatory responses to semantic and syntactic violations. J. Cogn. Neurosci. 26,
2840–2862. doi: 10.1162/jocn_a_00670

Kraus, N., Anderson, S., and White-Schwoch, T. (2017). The Frequency-
Following Response: A Window Into Human Communication. Cham: Springer.

Krishnan, A., Gandour, J. T., and Bidelman, G. M. (2010). The effects of tone
language experience on pitch processing in the brainstem. J. Neurolinguist. 23,
81–95. doi: 10.1016/j.jneuroling.2009.09.001

Krizman, J., and Kraus, N. (2019). Analyzing the FFR: a tutorial
for decoding the richness of auditory function. Hear. Res. 382, 107779.
doi: 10.1016/j.heares.2019.107779

Kulasingham, J. P., Brodbeck, C., Presacco, A., Kuchinsky, S. E.,
Anderson, S., and Simon, J. Z. (2020). High gamma cortical processing of
continuous speech in younger and older listeners. Neuroimage 222, 117291.
doi: 10.1016/j.neuroimage.2020.117291

Kutas, M., and Federmeier, K. D. (2011). Thirty years and counting:
finding meaning in the N400 component of the event-related brain potential
(ERP). Annu. Rev. Psychol. 62, 621–647. doi: 10.1146/annurev.psych.093008.
131123

Kutas, M., and Hillyard, S. A. (1984). Brain potentials during reading
reflect word expectancy and semantic association. Nature 307, 161–163.
doi: 10.1038/307161a0

Lewis, M. (2007). Stepwise Versus Hierarchical Regression: Pros and Cons.
Available online at: https://eric.ed.gov/?id=ED534385.

Liegeois-Chauvel, C., Musolino, A., Badier, J., Marquis, P., and Chauvel, P.
(1994). Evoked potentials recorded from the auditory cortex in man: evaluation
and topography of the middle latency components. Electroencephalogr. Clin.
Neurophysiol. 92, 204–214. doi: 10.1016/0168-5597(94)90064-7

Liu, F. T., Ting, K. M., and Zhou, Z.-H. (2008). “Isolation forest,” in 2008 Eighth
IEEE International Conference on Data Mining (Pisa: IEEE), 413-422.

Mahoney, M. (2011). Large Text Compression Benchmark. Available online at:
www.mattmahoney.net/dc/text.html.

Meyer, L. (2018). The neural oscillations of speech processing and language
comprehension: state of the art and emerging mechanisms. Eur. J. Neurosci. 48,
2609–2621. doi: 10.1111/ejn.13748

Mikolov, T., Kombrink, S., Burget, L., Černockỳ, J., and Khudanpur, S.
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