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Abstract 15 

Seeing a person talking can help to understand them, in particular in a noisy environment. However, 16 

how the brain integrates the visual information with the auditory signal to enhance speech 17 

comprehension remains poorly understood. Here we address this question in a computational model 18 

of a cortical microcircuit for speech processing. The model consists of an excitatory and an inhibitory 19 

neural population that together create oscillations in the theta frequency range. When simulated with 20 

speech, the theta rhythm becomes entrained to the onsets of syllables, such that the onsets can be 21 

inferred from the network activity. We investigate how well the obtained syllable parsing performs 22 

when different types of visual stimuli are added. In particular, we consider currents related to the rate 23 

of syllables as well as currents related to the mouth-opening area of the talking faces. We find that 24 

currents that target the excitatory neuronal population can influence speech comprehension, both 25 

boosting it or impeding it, depending on the temporal delay and on whether the currents are excitatory 26 

or inhibitory. In contrast, currents that act on the inhibitory neurons do not impact speech 27 

comprehension significantly. Our results suggest neural mechanisms for the integration of visual 28 

information with the acoustic information in speech and make experimentally-testable predictions. 29 

 30 

31 
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1. Introduction 32 

Speech comprehension can benefit from other sensory input, in addition to the auditory signal, through 33 

multisensory integration [1,2]. As a striking example, seeing a speaker's face and their moving lips can 34 

improve the comprehension of speech in noise by more than 10 dB in the signal-to-noise ratio [3,4]. 35 

Such audiovisual enhancement of speech comprehension may result from different visual features such 36 

as facial gestures, hand movements, jaw movements as well as the alternating configuration of the lips, 37 

teeth, tongue, head and eyebrows [5–7]. In particular, the area of mouth opening is strongly correlated 38 

to the amplitude fluctuations in speech, and mouth movements typically precede the corresponding 39 

voice onset by about 100-300 ms [8]. 40 

Classic theories of such multisensory processing posit that primary sensory regions process only 41 

unisensory inputs [9,10]. The individual streams of information are then relayed to higher-level 42 

association cortices where the information from the various unisensory regions converge to create a 43 

multisensory percept. However, recent studies in several species have shown that the integration of 44 

auditory information with other sensory modalities can occur in the brain as early as the primary and 45 

secondary auditory cortices which were hitherto considered to be unisensory areas [11]. For instance, 46 

in adult rhesus monkeys, visual stimuli were found to modulate the activity of single neurons as well 47 

as the local field potential (LFP) in the primary auditory cortex [12–15]. Similarly, single-unit 48 

recordings as well as the LFP in the auditory cortex of anaesthetized ferrets were influenced by visual 49 

stimuli [16,17]. In awake mice, using multisite probes to sample single units across multiple cortical 50 

layers, it was demonstrated that visual stimuli influenced firing in the primary auditory cortex [18] and 51 

short-term visual deprivations led to enhanced neuronal responses and frequency selectivity to sounds 52 

in layer 4 of primary auditory cortex (A1) [19]. Experiments using a voltage-sensitive dye and optical 53 

imaging in guinea pigs observed inhibitory responses in auditory areas about 110 ms after the onset of 54 

a visual stimuli [20]. 55 
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In support of multisensory processing in early sensory areas, it has further been demonstrated that direct 56 

projections from visual areas to the auditory cortex exist in monkeys [21,22], ferrets [23], Mongolian 57 

gerbils [24], marmosets [25] and they have also been suggested in rats [26]. 58 

In humans, using fMRI, it has similarly been found that visual stimulation and the reading of text by 59 

themselves activated the auditory cortex [27,28]. Further studies using Magnetoencephalography 60 

(MEG) showed that viewing a speaker’s face improved the tracking of speech rhythms in the auditory 61 

cortex [29,30], and additionally, using intercranial electroencephalography (iEEG), it was shown that 62 

the phase of the slow oscillations in the auditory cortex could track the rhythms in a talking face [31]. 63 

Moreover, intracranial stereotactic electroencephalographic (sEEG) recordings in human patients 64 

suggest direct pathways linking early visual and auditory regions and that visual input is processed in 65 

the auditory cortex about 100 ms after the visual onset [32]. 66 

Current theories of speech processing include a role of the cortical tracking of the amplitude fluctuations 67 

in speech by the different cross-coupled neural oscillations such as delta (1 - 4 Hz), theta (4 - 8 Hz) and 68 

gamma (25 - 100 Hz) rhythms [33,34]. These oscillations occur at the rhythms set by words, syllables 69 

and phonemes, respectively. In particular, the theta band is assumed to parse speech into syllables [35–70 

38] thus providing temporal frames for the phonemic encoding by the gamma rhythm. A computational 71 

model of a spiking neural network for speech processing that included theta oscillations coupled to 72 

gamma oscillations showed that phonemes could indeed by decoded from the gamma activity when it 73 

was parsed by the input from the theta oscillator. 74 

Visual enhancement of speech comprehension may, at least in part, result from the visual stimuli 75 

affecting oscillatory activity in the auditory cortex. Studies on ferrets showed indeed that information 76 

from the visual cortex was conveyed to the auditory cortex through influencing the phase of the LFP 77 

[17]. One study found increases in alpha power in the auditory cortices due to visual signals [39] 78 

whereas others observed changes, including phase resets, in the delta (3–4 Hz), theta (4–8 Hz), beta 79 

(12–30 Hz) and alpha (8–14 Hz) frequency bands [32,33,40–42].  80 
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The precise mechanisms by which visual signals can influence cortical oscillations related to speech, 81 

and thereby impact speech comprehension remain, however, elusive. Even though there have been 82 

computational models of phase resets of delta oscillations [43] and biophysical models of phase locking 83 

of oscillators [44,45], none of them investigated how these effects relate to speech processing. 84 

In this study we employ a recently suggested model of a spiking neural network for speech processing 85 

to investigate the effect of visual input [46]. In particular, the artificial neural network includes a module 86 

for theta oscillations that can parse speech into distinct syllables. We investigate how different types of 87 

speech-related visual input influence the accuracy of the syllable parsing.  88 

   89 

2. Methods 90 

2.1 Architecture of the computational model 91 

Our artificial spiking neural network for speech processing is based on a recently-introduced model that 92 

contains coupled theta- and gamma-oscillations [46]. The theta oscillations thereby segment a speech 93 

stream into individual syllables, and the neural activity in the gamma range can allow to decode the 94 

syllable identity. 95 

The auditory speech input is firstly processed by a model of the thalamus before reaching a module that 96 

produces oscillations in the theta range (figure 1a). Because we are interested in investigating the 97 

influence of slow visual input, such as related to the opening and closing of the mouth, on speech 98 

processing, our model includes only the theta oscillator and not also a gamma oscillator. When 99 

stimulated by a speech input, the spiking activity of the theta module becomes aligned to the syllable 100 

boundaries. An example speech input, its time frequency spectrogram and the resulting LFP and spiking 101 

neural activity are shown in figure 1(b). 102 

The theta module produces oscillations through an interplay of excitatory neurons (Te) and inhibitory 103 

neurons (Ti). that are reciprocally coupled via inhibitory and excitatory synapses. The theta-band 104 
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oscillations are generated by the principle of slower feedback inhibition following fast recurrent 105 

excitations. At the beginning of each oscillatory cycle, the excitatory input increases, resulting in an  106 

 107 

increase in the firing rate of the excitatory population. The inhibitory population eventually catches up 108 

and brings down the firing rate of the excitatory population. As the excitatory population activity goes 109 

down, and as a result the inhibitory population activity decreases, the network recovers from inhibition 110 

and the excitatory firing rate increases again. This results in a rhythmic behaviour that is referred to as 111 

Pyramidal Interneuron Theta (PIN-TH) mechanism, in analogy with the Pyramidal Interneuron Gamma 112 

(PING) model [47]. 113 

We consider 10 excitatory neurons that are reciprocally connected to each other. Likewise, we model 114 

10 inhibitory neurons with all-to-all connections as well. The all-to-all connectivity within the Te 115 

neurons respectively the Ti neurons means that we model a local cortical network. 116 

The neurons are modelled as leaky integrate-and-fire neurons with the following dynamics for the 117 

voltage 𝑉𝑖 for cell i: 118 

 𝐶
𝑑𝑉𝑖

𝑑𝑡
= 𝑔𝐿(𝑉𝐿 − 𝑉𝑖) + 𝐼𝑖

𝑆𝑌𝑁(𝑡) + 𝐼𝑖
𝐼𝑛𝑝,𝑎𝑢𝑑(𝑡) + 𝐼𝑖

𝐼𝑛𝑝,𝑣𝑖𝑠(𝑡) + 𝐼𝑖
𝐷𝐶 + 𝜂(𝑡)  (1) 119 

Figure 1. Architecture of the spiking neural network and the extraction of syllable onsets. (a) Network 

architecture. The auditory input is decomposed through 32 frequency channels and the resulting signal is relayed 

through a population of relay neurons, which act as a spectro-temporal filter, to the theta module. The theta module 

consists of 10 excitatory neurons (Te) and 10 inhibitory neurons (Ti) and generates self-sustained oscillations in the 

theta frequency band. The visual input is added to either Te or Ti. (b) The theta LFP generated by an example 

sentence ‘She had your dark suit in greasy wash water all year ’together with the estimated syllable onsets (blue, 

top panel). The spiking of the inhibitory Ti neurons (blue dots) is aligned to the syllable onsets (red lines, bottom 

panel). 
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where 𝐶 is the capacitance of the cellular membrane; 𝑔𝐿 and 𝑉𝐿 are the conductance and the reversal 120 

potential of the leak current; 𝐼𝑖
𝑆𝑌𝑁(𝑡), 𝐼𝑖

𝐼𝑛𝑝,𝑎𝑢𝑑(𝑡), 𝐼𝑖
𝐼𝑛𝑝,𝑣𝑖𝑠(𝑡), 𝐼𝑖

𝐷𝐶 are the synaptic current, the auditory 121 

stimulus-induced current, the visual stimulus-induced current and the constant direct current  delivered 122 

to the cell. 𝜂(𝑡) is white Gaussian noise with a variance of 𝜎2 . Whenever the membrane potential of 123 

the neuron reaches the threshold potential 𝑉𝑇𝐻𝑅 , a spike is generated and returned to the reset potential 124 

𝑉𝑅𝐸𝑆𝐸𝑇 , .  125 

The synaptic current 𝐼𝑖𝑗
𝑆𝑌𝑁(𝑡) to the postsynaptic neuron i from the presynaptic neuron j is modelled as 126 

follows:  127 

 𝐼𝑖𝑗
𝑆𝑌𝑁(𝑡) = 𝑔𝑖𝑗𝑠𝑖𝑗(𝑡) (𝑉𝑗

𝑆𝑌𝑁 − 𝑉𝑖(𝑡))  (2) 128 

where 𝑔𝑖𝑗 is the conductance of the synapse connecting neuron j to neuron i; 𝑠𝑖𝑗(𝑡) is the activation 129 

variable of the synapse, and 𝑉𝑗
𝑆𝑌𝑁 is the equilibrium potential of the synaptic current from neuron j. 130 

The dynamics of the activation variables 𝑠𝑖𝑗(𝑡) of the neurons are described by the following set of 131 

equations: 132 

 
𝑑𝑥𝑖𝑗

𝑅

𝑑𝑡
= −

𝑥𝑖𝑗
𝑅

𝜏𝑗
𝑅 + 𝛿(𝑡 − 𝑡𝑗

𝑆𝑃𝐾),  (3) 133 

 
𝑑𝑠𝑖𝑗

𝑑𝑡
=

𝑥𝑖𝑗
𝑅−𝑠𝑖𝑗

𝜏𝑗
𝐷 ,  (4) 134 

where 𝑥𝑖𝑗
𝑅  are activation variables of the synapse from neuron j to neuron i; 𝛿(𝑡 − 𝑡𝑗

𝑆𝑃𝐾) denotes a spike 135 

generation in a presynaptic neuron j at the time 𝑡𝑗
𝑆𝑃𝐾, and 𝜏𝑗

𝑅 and 𝜏𝑗
𝐷 are time constants of synaptic rise 136 

and decay of the presynaptic neuron j, respectively.  137 

Therefore, 𝐼𝑖
𝑆𝑌𝑁(𝑡), the sum of all synaptic inputs from the cells projecting to the ith neuron, is given 138 

by 139 

 𝐼𝑖
𝑆𝑌𝑁(𝑡) = ∑

𝑗
𝑔𝑖𝑗𝑠𝑖𝑗(𝑡) (𝑉𝑗

𝑆𝑌𝑁 − 𝑉𝑖(𝑡)).  (5) 140 
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The local field potential at time t, LFP(t), is obtained by summing the absolute values of all the synaptic 141 

currents delivered to all the theta excitatory cells in the network [48]. 142 

The model parameters were adapted from [49]. The complete list of model parameters and their values 143 

are presented in Table 1. All numerical simulations of the model were performed in a custom written 144 

Python script using the packages SciPy[50] and Brian2, a Python package for implementing simulations 145 

of networks of neurons [51]. We used a time step of 0.01ms in all our simulations. 146 

2.2 Auditory stimuli and their processing in the model 147 

Spoken English sentences from either the TIMIT dataset [52] or from the GRID corpus [53] were 148 

provided as the auditory input to the network. The TIMIT corpus reflects realistic listening scenarios 149 

by incorporating speakers of different accents and speech production rates. It comprises of over 6,300 150 

phonetically-labelled sentences. The GRID corpus, on the other hand, contains both the audio and visual 151 

recordings of 34 speakers speaking 1,000 sentences each. 152 

The material from the TIMIT corpus was used for the simulations with a pulse input current, whereas 153 

the data from the GRID corpus and the corresponding videos were used for simulations where the visual 154 

current corresponded to either the area of the mouth opening or its velocity. A silent period sampled 155 

from a uniform distribution in the range 250 to 750 ms was added to each sentence to provide variability 156 

in the onset of the sentence with respect to the intrinsic firing of the theta module. This was done in 157 

order to avoid any spurious phase-locking of the network rhythm to the speech input rate. 158 

For each simulation, a random subset of 100 sentences were chosen as the speech input in the model 159 

simulation. Speech-shaped noise was then added to each of these speech inputs. To produce the speech 160 

shaped noise, another randomly selected sentence was picked from the TIMIT database.  From the linear 161 

prediction coefficients of this second sentence, a linear filter was computed. The linear filter was then 162 

convolved with a white-noise Gaussian signal to yield the speech shaped noise. The speech signal and 163 

the resulting speech shaped noise signal were mixed at a SNR of 0 dB to produce the auditory input to 164 

the model. 165 
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The auditory input was firstly processed through the model of peripheral and subcortical auditory 166 

processing [54]. The subcortical model represented the cochlear filter bank and decomposed the input 167 

signal into 128 auditory channels with center frequencies that are logarithmically spaced between 100 168 

and 4000 Hz [54]. A series of non-linear operations representing the neural processing in the auditory 169 

nerve and subcortical nuclei were then performed on this decomposed signal. The model was 170 

implemented in a custom written Python script based on the original MATLAB implementation [46]. 171 

The number of auditory channels was then reduced to 32 by taking every fourth channel from the 128 172 

channels. In order to reflect the experimental observation of the entraining of endogenous theta activity 173 

in the auditory cortex to the syllabic rhythm of natural speech stimuli, the theta module was designed 174 

to generate bursts of spikes aligned to the syllabic onsets in the presented sentence. For this purpose, 175 

the 32 obtained auditory channels were convolved with a spectro-temporal filter and projected to the 176 

Te neurons. This spectro-temporal filter represented a population of relay neurons with weights that 177 

corresponded to the synaptic strengths [55]. It projected the inputs with a delay of up to 50 ms and 178 

predicted syllabic onsets (binary events) based on the data from the 32 auditory channels from up to 50 179 

ms preceding time t, in steps of every 10 ms: 180 

 �̂�(𝑡) = ∑
𝑐=1

32

∑
𝜏=−50

0

𝐵(𝑐, 𝜏)𝑋(𝑐, 𝑡 + 𝜏).  (6) 181 

𝑌(𝑡) is a binary variable indicating the syllabic onsets in a sentence; �̂�(𝑡) is an estimate of that variable; 182 

c is the index of the auditory channel; 𝜏 is the latency in ms with respect to time t; B is a matrix of filter 183 

coefficients and X is the input from auditory channel c at time t. The binary vector 𝑌(𝑡) was determined 184 

such that it had a value of 1 at the onset of each syllable but was 0 elsewhere." 185 

To obtain the coefficients B of this spectro-temporal filter, 1,000 sentences that were not subsequently 186 

used for any simulations of the network, were randomly chosen from the TIMIT corpus. These 187 

sentences were appended with a silence of 500-1,000 ms at the beginning and were processed through 188 

the above-described auditory periphery model and then downsampled to 100 Hz and concatenated to 189 

give X. The binary vector with the corresponding syllabic onsets were processed accordingly to obtain 190 
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Y. The coefficients B were then obtained by providing an optimal mapping between X and Y using sparse 191 

bilinear regression [56]. Once the filter coefficients were obtained, we convolved the optimized kernel 192 

with the 32 auditory channels and scaled it down, to regulate the input current, by a factor of 4.5 to 193 

obtain the input to the Te neurons as in the original model by [46]. 194 

2.3 Syllable parsing in the model 195 

The speech input was added in the model through a current, 𝐼𝑖
𝐼𝑛𝑝,𝑎𝑢𝑑

, to the excitatory neurons (Te), as 196 

specified above. The visual input, on the other hand, was added to the model through the visual current 197 

term 𝐼𝑖
𝐼𝑛𝑝,𝑣𝑖𝑠

  either to the pyramidal neurons (Te) or to the inhibitory neurons (Ti). 198 

In the absence of any speech input, the model exhibited self-sustained theta oscillations. When auditory 199 

input was added, this signal was chunked into distinct units by the theta rhythm. In particular, these 200 

chunks were delineated by the rhythmic spike bursts in the theta inhibitory module and were considered 201 

to represent individual syllables. A theta spike burst was thereby considered to be represented by the 202 

spiking of at least two inhibitory neurons in the theta module within a time window of 15 ms. The 203 

timing of such a spike burst was then considered to be the time of the maximal firing rate of Ti neurons.  204 

2.4 Analysis of syllable parsing in the model 205 

To quantify the accuracy of the model's syllable parsing, we computed a distance measure between the 206 

syllable boundaries inferred from the network activity and the actual boundaries, called the parsing 207 

score. The parsing score was obtained in three steps: 1) we computed a distance metric between the 208 

model’s predictions and actual syllabic onsets, 2) we subtracted a control distance from this measure 209 

and 3) we divided the net result by the number of syllables. A parsing score of 1 therefore corresponded 210 

to perfect parsing by the model and a parsing score of 0 is what one would expect by chance. 211 

To compute the distance metric in the first step, we used the normalized Victor-Purpura spike distance 212 

metric (VPd) [57] to quantify the overall misalignment of the predicted and the actual syllable onsets. 213 

Misalignment can result from missed syllable onsets, misaligned onsets, or additional onsets inferred 214 
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from the network activity. The VPd is particularly suitable for this task (and commonly used in spike 215 

train analysis) because it captures all three types of misalignments. The VPd between two series of 216 

binary events is calculated as the minimum cost of transforming one series into the other using one of 217 

the three operations: insertion of an event, deletion of an event and shifting of an event. A cost parameter 218 

of 50 ms was used. Hence, when the timing difference between the predicted and the actual syllable 219 

boundaries was no more than 50 ms, the two were said to be matched. A value corresponding to the 220 

ratio of the time difference to the cost was added to the distance parameter. When they were more than 221 

50 ms apart, the score was augmented by 1. This was then subtracted from a control score defined by 222 

the normalized VPd score between the syllabic onsets and uniformly distributed bursts of spikes in the 223 

same interval. The onset in the case of the control score calculation was chosen in the same way as the 224 

random onset of the sentence. The difference in the earlier distance score and the control score was then 225 

divided by the number of syllables of the sentences, to normalize the score across different acoustic 226 

speech inputs.  227 

The parsing scores were obtained in the same way for every simulation irrespective of the external 228 

audio and visual current inputs. The analysis was implemented in a custom written Python script using 229 

methods from SciPy package. The significance of the parsing scores obtained in each visual input 230 

condition with respect to the no-visual condition was computed using the Wilcoxon signed-rank test 231 

[58]. We then applied the Benjamini-Hochberg correction to the obtained p-values to check for false 232 

discoveries from multiple comparisons [59]. The significance threshold for the hypothesis testing was 233 

set to p=0.05. 234 

2.5 Extraction of mouth area from the videos 235 

To extract visual information from the videos of the GRID corpus, and in particular the mouth area, we 236 

used a custom-written Python script. The videos of the GRID corpus typically had the face of a speaker 237 

on a blue background while the speaker recited the sentence. The videos had a frame rate of 25 Hz and 238 

the speakers’ face had been aligned across all the frames of the video. Each image was cropped to a 239 

small region around the mouth. The corresponding cropping region was manually determined for each 240 
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speaker and stayed the same throughout the video. The pixels of the lips were then extracted using the 241 

property that the intensity of the red hue of these pixels was generally greater than the intensities of the 242 

blue or green pixels. The image was then blurred with a Gaussian filter to remove small, isolated pixels. 243 

By extracting connected objects greater than a certain threshold, we could thus extract the outer 244 

boundary of the lips. An example of the extracted lip contour whose outer boundary is highlighted by 245 

green dots is shown in figure 3(a). The number of pixels enclosed within this outer boundary was then 246 

computed for each image to obtain the area of the open mouth. We z-scored the number of pixels and 247 

upsampled the resulting signal to the same frequency as the auditory signal used in the simulation of 248 

the model corresponding to the time step of the simulation of 0.01 ms, i.e. 100 KHz, to obtain the 249 

mouth-opening area. An example is shown in figure 3(b). To explore the influence of the magnitude of 250 

the visual input on the audiovisual speech processing, in certain simulations, we multiplied the resulting 251 

signal with a factor that we called the amplitude of the area of the mouth opening. Effectively, this 252 

corresponded to scaling the standard deviation of the mouth area signal. An amplitude of 1 was used 253 

for the current unless mentioned otherwise. 254 

2.6 Extraction of velocity of the mouth-opening area from the videos 255 

To obtain the velocity of the mouth-opening area, we computed the time difference of the number of 256 

pixels within the lip contour that we obtained for a given speaker in a video. This difference signal was 257 

then z-scored to obtain the velocity of the mouth-opening area. In certain simulations, we multiplied 258 

this resulting signal with a certain factor, that we termed the amplitude of the velocity of the mouth-259 

opening area. Effectively, this corresponded to scaling the standard deviation of the signal. An 260 

amplitude of 1 was used for the current unless otherwise mentioned. An example signal of the velocity 261 

of the mouth area obtained is shown in figure 4(a).  262 

2.7 Adding visual input to this network 263 

We incorporated a visual input current of one of the three types. First, we considered a rectangular 264 

pulse current in which each pulse had a duration of 25 ms and was located at the syllable boundary. 265 

This current represented a simplified input that bore direct relation to the syllable rhythms in the 266 
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speech signal. Second, we considered a current that varied in proportion to the mouth-opening area. 267 

This current represented an important feature of the visual stimuli. Third, we investigated a current 268 

that was proportional to the velocity of the mouth-opening area. This current was chosen since the 269 

visual cortex can extract motion aspects from videos. 270 

We did not consider further, more complex spatiotemporal filters for the video signal. Unlike the 271 

spectrotemporal auditory filter, such visual filters would most likely perform poorly, due to the much 272 

higher dimensionality of the visual input. As the flow of visual information to the speech processing 273 

areas of the brain remains poorly understood, we have chosen this simplified model of 'lip detection 274 

rather than a more intricate representation of the visual signal.  275 

These visual currents were added as 𝐼𝑖
𝐼𝑛𝑝,𝑣𝑖𝑠

(𝑡) to either the excitatory population or the inhibitory 276 

population of the theta network module. Moreover, the visual input current was offset in time with 277 

respect to the corresponding auditory signal such that we could investigate the effects of the different 278 

time-lagged offsets in visual current on the syllable parsing scores.  279 

For each of the three different types of currents, we studied four conditions: a) adding an excitatory 280 

visual input current to the excitatory neurons of the theta module, b) adding an excitatory visual input 281 

current to the inhibitory neurons, c) adding an inhibitory visual input current to the excitatory neurons 282 

of the theta module, and d) adding an inhibitory visual input current to the inhibitory neurons. In all 283 

cases, we compared the resulting syllable parsing scores to the condition with no visual input current. 284 

2.8 Computing the phase of the signal 285 

To compute the instantaneous phase of the LFP, we used the Hilbert transform. The LFP from the theta 286 

module was firstly filtered using a third-order lowpass Butterworth filter with a cutoff frequency of 30 287 

Hz. The Hilbert transform was subsequently applied to the resulting signal to obtain the envelope and 288 

phase of the signal. We then determined the phase of the signal at the syllabic onsets of the sentence. 289 

The mean phase at the syllabic onsets was computed under the different visual input conditions and was 290 

compared to the case with no visual input.  291 
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2.9 Computing the scalogram of the signal 292 

To compute the scalogram of the LFP, we consider the frequency band between 1 Hz and 100 Hz and 293 

performed a Morlet continuous wavelet transform with logarithmically spaced frequencies over this 294 

frequency band. This function was implemented using the Time Frequency Misfit module in the Signal 295 

module of the Obspy package in Python [60]. Once the time-frequency coefficients of the scalogram 296 

were obtained, we squared their absolute values and averaged them over time to obtain different 297 

coefficients of the average squared scalogram as a function of frequency. This quantity represents  the 298 

power spectral density in the LFP [61].  299 

3. Results 300 

We first verified that the theta module yielded oscillations in the theta frequency range. We found that, 301 

before the beginning of a sentence, the module produced bursts at an interval of about 150 ms (figure 302 

1(b)). These regular bursts of neuronal spikes were also visible in the LFP.  303 

When a speech stimulus was presented to the network, the spiking activity of the theta network became 304 

aligned to the syllable onsets (figure 1(b)). This allowed us to investigate how well this syllable parsing 305 

through the spikes of the theta module performed, and how this performance changed with the addition 306 

of different visual stimuli. 307 

3.1 Syllable parsing score for pulsed input current 308 

We first considered a current that consisted of pulses of a duration of 25 ms and an amplitude of 10 pA, 309 

unless mentioned otherwise. Each pulse occurred at the onset of a syllable, although we also considered 310 

different time lags between the pulses and the corresponding syllables. An example of an excitatory 311 

pulse current where the onsets of the pulses coincided with the syllable onsets is shown in figure 2(a). 312 

The parsing score for speech without any background auditory noise was 0.08, similar to the score 313 

obtained in the original model by Hyafil et al.[46]. In the audio-only condition in our simulations, the 314 

audio is comprised of a speech input with background speech-shaped noise at an SNR of 0 dB. This 315 
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resulted in a parsing score of 0.06 for the audio-only condition. These comparatively low parsing scores 316 

reflected frequent missed syllable onsets, misaligned onsets, and additional onsets inferred from the 317 

neural activity. 318 

Adding an excitatory pulse current to the excitatory neurons significantly changed the parsing score 319 

(figure 2(b)). When the onset of the pulsed coincided with the syllabic onsets, the parsing score 320 

improved significantly compared to the audio-only score of 0.06, that is, compared to the condition 321 

without any visual input current. On the other hand, delays of around -75 ms as well as around 100 ms 322 

led to significantly worse syllable parsing. A positive delay hereby meant that the current pulses 323 

occurred after the corresponding syllabic onsets. 324 

When an inhibitory pulse input was presented to the excitatory population, we observed a significant 325 

improvement in the mean parsing score at a delay of about -125 ms, as well as a significant worsening 326 

of syllable parsing at a delay of about -25 ms (figure 2(b)).  327 

Adding an excitatory or inhibitory pulse current to the inhibitory neurons of the theta module, however, 328 

had no significant effect on the syllable parsing (figure 2(b)). This could have resulted from the 329 

recurrent inhibitory connections in the inhibitory population of the network, that may have effectively 330 

stunted the activity of the neurons in spite of an external input current.  331 

The parsing scores showed a periodicity of about 150 ms as a function of the delay of the input pulse 332 

current when the latter was presented to the excitatory neurons. This periodicity was comparable to the 333 

periodicity in the LFP of the theta module, as evident in the autocorrelation of the LFP without a visual 334 

or speech input (figure 2(c)). Adding an excitatory pulse current at the syllabic onset presumably made 335 

the neurons ready to fire at the syllabic onset. An inhibitory current, on the other hand, reset the 336 

excitatory population, such that the neurons were ready to fire together in the next theta cycle, at the 337 

syllabic onset. 338 

Next, we investigated the effect of the amplitude and duration of the input current to the excitatory 339 

neurons on the parsing scores. To this end, we considered two time lags in the input current: a delay of 340 
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25 ms in the case of the excitatory input, and an advance of 125 ms for the inhibitory pulses. These time 341 

lags were chosen because they produced the largest significant improvements in the parsing score for 342 

the respective currents. The parsing scores improved with the amplitude of the visual current, in 343 

particular for smaller currents below 3 pA (figure 2(d)).  344 

To vary the duration of the pulses, we fixed the onset of the pulse current at a delay of 25 ms for the 345 

excitatory input, and at an advance of 125 ms for the inhibitory current. We then varied the location of 346 

the offset, thus varying the duration of the pulse. The mean parsing score improved as the duration of 347 

the pulse increased until 25 ms and then reduced again for longer durations (figure 2(e)). The pulse 348 

current presumably reset the activity of the population, and the reset may have been more efficient for 349 

longer pulses. However, the longer each pulse lasted, i.e. the further the offset of the pulse current was, 350 

the more delayed the reset of the theta population likely was, thus delaying the matching of the theta 351 

prediction with respect to the actual syllabic onset. This effect may have caused the degradation of the 352 

parsing score for longer pulses.  353 

 354 

Page 16 of 34AUTHOR SUBMITTED MANUSCRIPT - JNE-104614.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



 355 

To explicitly test this hypothesis, we computed the mean phase of the LFP at the syllabic onset for the 356 

different pulse current stimulations. We then related the phase of the LFP to the parsing score (figure 357 

2(f)). The parsing scores showed a strong dependency on the phase. In particular, the parsing score 358 

Figure 2. Effect of a pulse input current on the parsing scores. (a) An example of an excitatory pulse input current 

signal with the onsets of the pulses located at the syllable onsets. (b) An excitatory input to the excitatory neurons (blue) 

can both improve the syllable parsing or impede it, depending on the delay. A positive delay hereby means that the 

pulses occur after the corresponding syllable onset. An inhibitory current to the excitatory neurons can influence the 

syllable parsing as well (red). Neither excitatory (green) nor inhibitory (cyan) current projected to the inhibitory neurons, 

however, has a significant effect on the syllable parsing. (c) The autocorrelation of the LFP in the absence of a speech 

stimulus or a visual current shows a periodicity of about 150 ms. (d) The mean parsing scores as a function of the 

amplitude of the pulse current. The excitatory inputs (blue) occur at 25 ms after the syllable onsets whereas the inhibitory 

input (red) is presented 125 ms before the syllable onset. (e) The mean parsing scores as a function of the duration of the 

pulse current. The excitatory inputs (blue) are presented 25 ms after the syllable onsets whereas the inhibitory input (red) 

occurs 125 ms before the syllable onset. (f) The mean parsing score is optimal for a particular phase of the LFP at the 

syllable onset, both for the excitatory current (blue) and for the inhibitory current (red). Statistical significance is denoted 

by asterisks (p<0.05, FDR correction for multiple comparisons).  
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improved most when the phase of the oscillation was reset to about 270 for the excitatory input, and 359 

to about 200 for the inhibitory current. 360 

3.2 Mouth-opening area 361 

Next, we added a visual input current that corresponded to the area of the mouth (figure 3(a),(b)). We 362 

thereby considered both positive and negative amplitudes. A positive amplitude hereby meant an 363 

excitatory current, and a negative amplitude an inhibitory current. We also considered different delays 364 

between the mouth-opening current and the speech signal. 365 

Presenting both an excitatory or an inhibitory current corresponding to the mouth-opening area to the 366 

theta excitatory population could increase as well as decrease the parsing score, depending on the delay  367 

(figure 3(c)). In particular, an excitatory current led to a worsening of syllable parsing at delays of 368 

around 50 ms. An inhibitory current at a delay of about 50 ms led to enhanced syllable parsing, whereas 369 

delays of around -150 ms and 150 ms led to lower parsing scores.   370 

The observed temporal dependencies resembled the ones obtained in a computational model on 371 

neurostimulation with the speech envelope [49]. This similarity may result from the considerable 372 

correlation of the mouth-opening area and the speech envelope of 0.4 [8]. 373 

In contrast, adding such a current to the theta inhibitory population did not affect the parsing score.  374 

We also investigated how the improvements in the parsing score for the current presented to the 375 

excitatory neurons varied with the amplitude of the current (figure 3(d)). We thereby considered a delay 376 

of -125 ms for the excitatory current, and a delay of 50 ms for the inhibitory one. The excitatory current 377 

only produced a significant change in the parsing score at the highest amplitude. In contrast, the 378 

inhibitory current showed significantly improved syllable parsing only for small amplitudes. The latter 379 

effect may imply that this current must be of the same order as that of the speech signal in order to 380 

improve syllable parsing. 381 
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382 

 383 

3.3 Velocity of the mouth opening area 384 

The third set of visual stimuli that we considered corresponded to the velocity of the mouth-opening 385 

area (figure 4(a)). We multiplied this current with a certain value that we refer to as the amplitude of 386 

the current. A positive amplitude results in an excitatory current, and a negative amplitude in an 387 

inhibitory one. This current was also offset in time by different delays with respect to the corresponding 388 

auditory speech input. 389 

As for the two other types of current, we found that both excitatory and inhibitory currents presented to 390 

the excitatory neurons could increase as well as decrease the parsing scores (figure 4(b)). In particular, 391 

an excitatory current at a delay of about -50 ms increased the parsing score, whereas a delay of about 392 

Figure 3. Effect of a current proportional to the mouth-opening area on the parsing scores. (a) The area of mouth opening 

is derived from the contour of the lips (green) (b) The area is then computed for every image in a video and z-scored to yield 

the time-varying mouth-opening area. (c) Adding an excitatory (blue) current to the excitatory neurons could significantly 

worsen the parsing score, whereas an inhibitory current (red) could both improve and worsen it. In contrast, neither an excitatory 

nor an inhibitory current presented to the inhibitory neurons had an impact on the paring scores (green and cyan). (d) The mean 

parsing scores as a function of the amplitude of the visual current. The excitatory input (blue) is presented 125 ms preceding 

the auditory input whereas the inhibitory input (red) is added at a delay of 50 ms. Statistical significance is denoted by asterisks 

(p<0.05, FDR correction for multiple comparisons).  
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100 ms led to a decrease. An inhibitory current could enhance syllable parsing at a delay of 125 ms and 393 

worsen the syllable parsing when presented at a delay of about -50 ms. 394 

When presented to the inhibitory neurons, however, such currents had no significant effect on syllable 395 

parsing (figure 4(b)). 396 

We also explored how the amplitudes of the currents, presented to the excitatory neurons, influenced 397 

the parsing scores (figure 4(c)). We thereby considered a delay of -50 ms for the excitatory current, and 398 

a delay of 125 ms for the inhibitory current. As we observed for the current that was based on the mouth-399 

opening area, large amplitudes of the current degraded the parsing score. 400 

3.4 Firing rates of the excitatory neurons under different visual input conditions 401 

As detailed above, we found that different types of visual currents can enhance syllable parsing when 402 

presented to the excitatory neurons. In particular, these current were 1) an excitatory pulse current with 403 

a delay of 25 ms, 2) an inhibitory pulse current at a delay 125 ms, 3) an excitatory current corresponding 404 

to the mouth-opening area at a delay of -125 ms, 4) an inhibitory current corresponding to the mouth-405 

opening area at a delay of 50 ms, 5) an excitatory current corresponding to the velocity of the mouth-406 

opening area at a delay of -25 ms, and 6) an excitatory current corresponding to the velocity of the 407 

mouth-opening area at a delay of 125 ms. 408 

We wondered how the firing rates of the excitatory neurons changed during the presentation of these 409 

currents (figure 4(d)). We found that all currents produced changes in the firing rates as compared to 410 

the lack of a visual current. Most currents led to moderately higher firing rates. However, the excitatory 411 

pulse current caused a much larger firing rate, more than twice the one obtained without visual input 412 

The inhibitory pulse current, on the other hand, yielded a somewhat lower firing rate than without visual 413 

current. 414 

 415 
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416 

 417 

3.5 Spectrogram and scalogram data for the different conditions 418 

As another assessment of the effects of the visual currents on the network activity, we investigated the 419 

LFP as well. We computed the squared absolute values of the spectrogram and determined how they 420 

varied as a function of frequency for the different input visual currents (figure 5). This quantity is the 421 

analogue of the power spectral density for the wavelet transform. An example LFP, the corresponding 422 

time-frequency spectrogram and the average of the squared absolute value of the spectrogram in the 423 

case of no-visual input is shown in figure 5(a). 424 

Figure 4. Effect of a current based on the velocity of the mouth-opening area on the parsing scores. (a) An example 

current signal. (b) Presenting an excitatory current (blue) or an inhibitory current (red) to the excitatory neurons could, at 

certain delays, significantly improve the parsing score as compared to no visual input (black). However, adding either an 

excitatory or inhibitory current to the inhibitory neurons (cyan and green) did not influence the syllable parsing. (c) The 

mean parsing scores as a function of the amplitude of the visual current. The excitatory inputs (blue) were presented at a 

delay of -25 ms, whereas the inhibitory input (red) was added at a delay of 125 ms. (d) The firing rates of the excitatory 

neurons under the different conditions. The excitatory pulse inputs (Pulse E) were presented at a delay of 25 ms, whereas 

the inhibitory pulse inputs (Pulse I) occurred at a delay 125 ms. The excitatory current corresponding to the mouth-opening 

area (Area E) was presented at a delay of -125 ms whereas the corresponding inhibitory current input (Area I) occurred at a 

delay of 50 ms. The excitatory current corresponding to the velocity of the mouth-opening area (Vel E) was added at a delay 

of -25 ms whereas the corresponding inhibitory current (Vel I) occurred at a delay of 125 ms. All input currents cause 

significantly different firing rates in the excitatory neurons, and in particular for the case of the excitatory pulse inputs (Pulse 

E). Statistical significance is denoted by asterisks (p<0.05, FDR correction for multiple comparisons).  
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We then investigated the impact of the six different currents described above that enhanced syllable 425 

parsing: 1) the excitatory pulse current with a delay of 25 ms, 2) the inhibitory pulse current at a delay 426 

125 ms, 3) the excitatory current corresponding to the mouth-opening area at a delay of -125 ms, 4) the 427 

inhibitory current corresponding to the mouth-opening area at a delay of 50 ms, 5) the excitatory current 428 

corresponding to the velocity of the mouth-opening area at a delay of -25 ms, and 6) the excitatory 429 

current corresponding to the velocity of the mouth-opening area at a delay of 125 ms. 430 

We found that excitatory pulses increased the overall power of the signal and shifted the location of the 431 

maximum from around 6 Hz to 5 Hz while adding a second local maximum at around 12 Hz (figure 432 

5(b)). The inhibitory pulse current also increased the overall power of the signal, though to a smaller 433 

extent than the excitatory current, and shifted the maximum slightly to a lower frequency. 434 

The excitatory and inhibitory currents that were based on the mouth-opening area both redistributed the 435 

power of the LFP and shifted the location of the maximum to a slightly higher frequency while causing  436 

an additional larger peak at a lower frequency (figure 5(c)). The amplitude of the maximum at the lower 437 

frequency was slightly higher for the case of the excitatory current than that of the inhibitory current. 438 

Regarding the currents based on of the velocity of the mouth-opening area, both excitation and 439 

inhibition increased the power of the LFP and caused an additional maximum at a low frequency (figure 440 

5(d)). 441 

 442 
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443 

 444 

 445 

Figure 5. The mean squared scalogram for different visual currents to the excitatory neurons. (a) The spectrogram 

derived from an exemplary LFP s and the corresponding squared scalogram as a function of frequency. (b) The squared 

scalograms for three different conditions: no visual input (green), an excitatory pulse input (blue) and inhibitory pulse 

inputs (red). The excitatory inputs (blue) were added at 25 ms after the syllable onsets whereas the inhibitory input (red) 

was presented 125 ms before the syllable onset. (c) The squared scalograms for currents based on the mouth-opening area. 

The excitatory input (blue) preceded the auditory signal by 125 ms, whereas the inhibitory input (red) had a delay of 50 

ms. (d) The mean squared scalograms for currents based on the velocity of the mouth-opening area. The excitatory input 

(blue) preceded the auditory signal by 25 ms whereas the inhibitory current (red) was presented with a delay of 125 ms. 
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4. Discussion 446 

We studied the effects of visual input on syllable parsing in an artificial neural network for speech 447 

processing. The neural network contained a theta module that consisted of coupled excitatory as well 448 

as inhibitory neurons and produced rhythmic bursts of spikes in the theta frequency range. When 449 

stimulated by speech, the spike bursts became aligned to the syllable boundaries, parsing the speech 450 

stream into distinct functional units.  451 

We designed the computational model to explore possible mechanisms of audio-visual integration in 452 

speech processing and generate testable hypotheses for experimental studies. The values proposed in 453 

Table 1 are a set of 'default' parameters, which may be furthermore modified if required. These values 454 

were previously used to systematically explore speech-in-noise processing in the model and were 455 

found to be a good fit showing similar trends to psychometric curves of human speech-in-noise 456 

comprehension[49]. Due to the relatively small size and low computational complexity, the model 457 

allows to quickly screen a large space of hyperparameters (as we did here) to predict the effects of 458 

different conditions on the model behaviour. 459 

We investigated how the accuracy of this syllable parsing changed when an additional current was 460 

added that mimicked different aspects of an accompanying visual signal. In particular, we added three 461 

different types of visual input currents to the network: a pulse current, a current corresponding to the 462 

mouth-opening area of the speaker, and a current corresponding to the velocity of the mouth-opening 463 

area.  464 

We found that adding each of the three types of visual input currents could enhance as well as impede 465 

syllable parsing. However, syllable parsing was only affected when the current acted on the excitatory, 466 

but not on the inhibitory neurons. We suppose that this is due to the recurrent inhibitory connections in 467 

the inhibitory population of the network which stunt the activity of the neurons in the presence of an 468 

external input current. 469 
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In the case of the pulse current, we observed that the parsing score as a function of the time lag exhibited 470 

some periodicity with a time period of 150 ms, which corresponded roughly to the time period of the 471 

theta oscillation. Furthermore, the dependency of the parsing score on the audiovisual time delay for 472 

the inhibitory pulse current was shifted with respect to the dependency for the excitatory current by 473 

about 100 ms, which suggested that the inhibitory currents inhibited the population which recovers after 474 

a theta cycle to be ready for the syllabic onset in the next theta cycle. Furthermore, in all these cases, 475 

we found that adding the visual current significantly improved the parsing score only at certain time 476 

lags of the visual current with respect to the auditory input current. This was because adding a visual 477 

input reset the phase of the theta LFP signal. The parsing score was greater if the LFP had an optimal 478 

phase at a syllable onset than when it had a non-optimal phase. 479 

Regarding the current based on the mouth-opening area, a significant improvement in the parsing score 480 

resulted when the visual current was inhibitory and delayed with respect to the auditory input by 50 ms, 481 

as well as when it was excitatory and had an advance of 125 ms. The current based on the velocity of 482 

the mouth area current could improve the syllable parsing when it was inhibitory and delayed by 150 483 

ms. 484 

When studying time lags between the auditory and the visual signal, we need to consider two 485 

components: the physical delay and the neural delay. The physical delay is the time difference between 486 

the onset of the audio signal and the visual signal, and the neural delay is the difference between the 487 

times it takes for the audio and visual input to reach the auditory cortex. The visual stimuli typically 488 

precede the auditory stimuli by about 100-300 ms, such as for the mouth movements of a speaker 489 

compared to the actual voice onset [8]. On the other hand, IERP and voltage dye recordings indicate 490 

that the visual current arrives about 100 ms in the auditory cortex after the onset of the visual signal 491 

[32]. These two results indicate that the visual input may stimulate the auditory cortex about 100 ms 492 

before the auditory input does. Our finding that inhibitory pulse input preceding the syllabic onset by 493 

about 125-150 ms can enhance syllable parsing may therefore be particularly relevant. 494 
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We have studied both excitatory as well as inhibitory currents. However, a study in guinea pig auditory 495 

cortex using a voltage-sensitive dye showed inhibitory responses about 110 ms after the onset of the 496 

visual stimuli [20]. Another study in humans using fMRI found mainly suppressed activations in 497 

auditory cortices in response to visual stimulation [28]. Together with the likely earlier activation of the 498 

auditory cortex from visual rather than from auditory input, this suggests the enhancement of syllable 499 

parsing through an inhibitory, preceding pulse current may serve as a good model for understanding 500 

how visual inputs can enhance speech comprehension. 501 

For the currents based on the mouth-opening area and on the corresponding velocity, the physical delay 502 

between the onset of the visual signal and the auditory signal is already incorporated in the signals. 503 

Therefore, we only need to account for the neural delay in the simulations. Considering a delay of 100 504 

ms between the auditory and the visual signals, as suggested by experiments as described above, we 505 

find an improvement in the syllable parsing from a current based on the velocity but not from a current 506 

based on the actual mouth-opening area. The important feature might therefore be the mouth-opening 507 

area velocity rather than the mouth-opening area itself. Indeed, primary visual cortex is known to 508 

behave as an edge detector and a motion detector, responsible for computing the motion of objects 509 

across scenes [62].  510 

When investigating which temporal lags, for a particular type of current, led to enhanced syllable 511 

parsing, we found lag regions with a width of about 50 - 100 ms. Future studies could try to design 512 

other currents with wider temporal regions for enhancing syllable parsing as seen in experimental 513 

studies [63]. Furthermore, the simulations could be made for different playback rates of audiovisual 514 

input and compared with experimental input [64]. 515 

Because syllable parsing in humans cannot be measured behaviourally, our computational results 516 

cannot be compared directly to behavioural data. However, syllable parsing is required for syllable 517 

decoding, and the latter can be tested in experiments on speech comprehension. Moreover, the model 518 

predictions on neural activity could be tested in neuroimaging experiments. Experimental data could 519 

compare the power spectral density of EEG waves and the firing rates to see how they correspond to 520 
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the simulations on the spectra of the LFP that we have done here to further shed light on the 521 

multisensory mechanism of audiovisual processing in the brain. Further studies could also tell us how 522 

visual speech affects the different oscillatory bands spatiotemporally across the auditory cortex and 523 

compare the results with the experimental data [65]. Integrating such neural data with behavioral data 524 

on speech comprehension in a computational model will further clarify the neural mechanisms of 525 

audiovisual speech processing. 526 

 527 

Table 1. Model parameters 528 

Parameter Description Value 

Neuron model 

𝐶 Cell membrane capacitance 1 pF 

𝑉𝑇𝐻𝑅 Spiking threshold -40 mV 

𝑉𝑅𝐸𝑆𝐸𝑇 Resting potential -87 mV 

𝑉𝐸
𝑆𝑌𝑁 Equilibrium potential of excitatory neurons 0 mV 

𝑉𝐼
𝑆𝑌𝑁 Equilibrium potential of inhibitory neurons -80 mV 

PINTh network 

𝑔
𝐿𝐸

 Leak conductance in 𝑇𝑒 neurons 0.0264 nS 

𝑔
𝐿𝐼

 Leak conductance in 𝑇𝑖 neurons 0.1 nS 

𝜏𝑇𝑒
𝑅  Synaptic rise constant of 𝑇𝑒 neurons 4 ms 

𝜏𝑇𝑖
𝑅  Synaptic rise constant of 𝑇𝑖 neurons 5 ms 

𝜏𝑇𝑒
𝐷  Synaptic decay constant of𝑇𝑒 neurons 24.3 ms 

𝜏𝑇𝑖
𝐷  Synaptic decay constant of 𝑇𝑖 neurons 30.36 ms 

𝐼𝑇𝑒
𝐷𝐶 Constant current delivered to 𝑇𝑒 neurons 1.25 pA 

𝐼𝑇𝑖
𝐷𝐶 Constant current delivered to 𝑇𝑖 neurons 0.0851 pA 

𝜎𝑇𝑒 Variance of the noise term in T𝑒 neurons 0.282 pA.ms1/2 
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𝜎𝑇𝑖 Variance of the noise term in T𝑖 neurons 2.028 pA.ms1/2 

Connectivity 

𝑔
𝑇𝑒,𝑇𝑖

 𝑇𝑖 → 𝑇𝑒 synaptic conductance strength 2.07/𝑁𝑇𝑖 nS 

𝑔
𝑇𝑖,𝑇𝑒

 𝑇𝑒 → 𝑇𝑖 synaptic conductance strength 3.33/𝑁𝑇𝑒 nS 

𝑔
𝑇𝑖,𝑇𝑖

 𝑇𝑖 → 𝑇𝑖 synaptic conductance strength 4.32/𝑁𝑇𝑖 nS 

 529 

  530 
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